These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23331166)

  • 61. Oxidation of methyl linoleate in micellar solutions induced by the combination of iron(II)/ascorbic acid and iron(II)/H2O2.
    Miccichè F; van Haveren J; Oostveen E; Laven J; Ming W; Okan Oyman Z; van der Linde R
    Arch Biochem Biophys; 2005 Nov; 443(1-2):45-52. PubMed ID: 16207483
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Photochemistry of organic iron(III) complexing ligands in oceanic systems.
    Barbeau K
    Photochem Photobiol; 2006; 82(6):1505-16. PubMed ID: 16968114
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Is Superoxide-Mediated Fe(III) Reduction Important in Sunlit Surface Waters?
    Xing G; Garg S; Waite TD
    Environ Sci Technol; 2019 Nov; 53(22):13179-13190. PubMed ID: 31638396
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and Fe(III).
    Li S; Sun W
    J Hazard Mater; 2011 Dec; 197():70-9. PubMed ID: 22001572
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxidation of inorganic compounds by Ferrate(VI) and Ferrate(V): one-electron and two-electron transfer steps.
    Sharma VK
    Environ Sci Technol; 2010 Jul; 44(13):5148-52. PubMed ID: 20527775
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions.
    Andreozzi R; Di Somma I; Marotta R; Pinto G; Pollio A; Spasiano D
    Water Res; 2011 Feb; 45(5):2038-48. PubMed ID: 21251692
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.
    González AG; Santana-Casiano JM; González-Dávila M; Pérez-Almeida N; Suárez de Tangil M
    Environ Sci Technol; 2014 Jul; 48(14):7933-41. PubMed ID: 24941285
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bench-scale evaluation of ferrous iron oxidation kinetics in drinking water: effect of corrosion control and dissolved organic matter.
    Rahman S; Gagnon GA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):1-9. PubMed ID: 24117078
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optical property of iron binding to Suwannee River fulvic acid.
    Yan M; Li M; Wang D; Xiao F
    Chemosphere; 2013 May; 91(7):1042-8. PubMed ID: 23499223
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Use of multiparametric techniques to quantify the effects of naturally occurring ligands on the kinetics of Fe(II) oxidation.
    Craig PS; Shaw TJ; Miller PL; Pellechia PJ; Ferry JL
    Environ Sci Technol; 2009 Jan; 43(2):337-42. PubMed ID: 19238961
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular investigation of the multi-phase photochemistry of Fe(III)-citrate in aqueous solution.
    West CP; Morales AC; Ryan J; Misovich MV; Hettiyadura APS; Rivera-Adorno F; Tomlin JM; Darmody A; Linn BN; Lin P; Laskin A
    Environ Sci Process Impacts; 2023 Feb; 25(2):190-213. PubMed ID: 35634912
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Carbonate-mediated Fe(II) oxidation in the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation.
    Song W; Zhai LF; Cui YZ; Sun M; Jiang Y
    J Phys Chem A; 2013 Jun; 117(22):4627-35. PubMed ID: 23662901
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Superoxide mediated reduction of organically complexed iron(III): comparison of non-dissociative and dissociative reduction pathways.
    Garg S; Rose AL; Waite TD
    Environ Sci Technol; 2007 May; 41(9):3205-12. PubMed ID: 17539527
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of dissolved natural organic matter on the kinetics of ferrous iron oxygenation in seawater.
    Rose AL; Waite TD
    Environ Sci Technol; 2003 Nov; 37(21):4877-86. PubMed ID: 14620813
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters.
    Santana-Casiano JM; González-Dávila M; Millero FJ
    Environ Sci Technol; 2005 Apr; 39(7):2073-9. PubMed ID: 15871239
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Light- and H
    Ma C; Huang R; Huangfu X; Ma J; He Q
    Environ Sci Technol; 2022 May; 56(9):5530-5541. PubMed ID: 35435677
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile
    Zhou N; Luther GW; Chan CS
    Environ Sci Technol; 2021 Jul; 55(13):9362-9371. PubMed ID: 34110796
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Oxygenation of Fe(II) in the presence of citrate in aqueous solutions at pH 6.0-8.0 and 25 degrees C: interpretation from an Fe(II)/citrate speciation perspective.
    Pham AN; Waite TD
    J Phys Chem A; 2008 Jan; 112(4):643-51. PubMed ID: 18179188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.