BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23331264)

  • 1. Elastomeric negative acoustic contrast particles for affinity capture assays.
    Cushing KW; Piyasena ME; Carroll NJ; Maestas GC; López BA; Edwards BS; Graves SW; López GP
    Anal Chem; 2013 Feb; 85(4):2208-15. PubMed ID: 23331264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastomeric negative acoustic contrast particles for capture, acoustophoretic transport, and confinement of cells in microfluidic systems.
    Shields CW; Johnson LM; Gao L; López GP
    Langmuir; 2014 Apr; 30(14):3923-7. PubMed ID: 24673242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastomeric microparticles for acoustic mediated bioseparations.
    Johnson LM; Gao L; Shields IV CW; Smith M; Efimenko K; Cushing K; Genzer J; López GP
    J Nanobiotechnology; 2013 Jun; 11():22. PubMed ID: 23809852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis.
    Cushing K; Undvall E; Ceder Y; Lilja H; Laurell T
    Anal Chim Acta; 2018 Feb; 1000():256-264. PubMed ID: 29289318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid capture of biomolecules from blood
    Li L; Shields CW; Huang J; Zhang Y; Ohiri KA; Yellen BB; Chilkoti A; López GP
    Analyst; 2021 Jan; 145(24):8087-8096. PubMed ID: 33079081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.
    Wang H; Liu Z; Kim S; Koo C; Cho Y; Jang DY; Kim YJ; Han A
    Lab Chip; 2014 Mar; 14(5):947-56. PubMed ID: 24402640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
    Yin D; Xu G; Wang M; Shen M; Xu T; Zhu X; Shi X
    Colloids Surf B Biointerfaces; 2017 Sep; 157():347-354. PubMed ID: 28622655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
    Austin Suthanthiraraj PP; Piyasena ME; Woods TA; Naivar MA; Lόpez GP; Graves SW
    Methods; 2012 Jul; 57(3):259-71. PubMed ID: 22465280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated microfluidic bioprocessor for solid phase capture immunoassays.
    Kim J; Jensen EC; Megens M; Boser B; Mathies RA
    Lab Chip; 2011 Sep; 11(18):3106-12. PubMed ID: 21804972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation.
    Ahmad R; Destgeer G; Afzal M; Park J; Ahmed H; Jung JH; Park K; Yoon TS; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13313-13319. PubMed ID: 29148722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-responsive reagent system for enabling microfluidic immunoassays with biomarker purification and enrichment.
    Hoffman JM; Stayton PS; Hoffman AS; Lai JJ
    Bioconjug Chem; 2015 Jan; 26(1):29-38. PubMed ID: 25405605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis.
    Gnyawali V; Strohm EM; Wang JZ; Tsai SSH; Kolios MC
    Sci Rep; 2019 Feb; 9(1):1585. PubMed ID: 30733497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multinode acoustic focusing for parallel flow cytometry.
    Piyasena ME; Austin Suthanthiraraj PP; Applegate RW; Goumas AM; Woods TA; López GP; Graves SW
    Anal Chem; 2012 Feb; 84(4):1831-9. PubMed ID: 22239072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.