These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23331307)

  • 1. Shedding new light on retinal protein photochemistry.
    Wand A; Gdor I; Zhu J; Sheves M; Ruhman S
    Annu Rev Phys Chem; 2013; 64():437-58. PubMed ID: 23331307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthorhodopsin: Proton pump with a carotenoid antenna.
    Balashov SP; Lanyi JK
    Cell Mol Life Sci; 2007 Sep; 64(18):2323-8. PubMed ID: 17571211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast photochemistry of light-adapted and dark-adapted bacteriorhodopsin: effects of the initial retinal configuration.
    Wand A; Friedman N; Sheves M; Ruhman S
    J Phys Chem B; 2012 Sep; 116(35):10444-52. PubMed ID: 22329764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex.
    Iyer ES; Gdor I; Eliash T; Sheves M; Ruhman S
    J Phys Chem B; 2015 Feb; 119(6):2345-9. PubMed ID: 25144664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric toggling of a natural photoswitch: ultrafast spectroscopy of Anabaena sensory rhodopsin.
    Wand A; Rozin R; Eliash T; Jung KH; Sheves M; Ruhman S
    J Am Chem Soc; 2011 Dec; 133(51):20922-32. PubMed ID: 22066688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
    Luecke H; Schobert B; Stagno J; Imasheva ES; Wang JM; Balashov SP; Lanyi JK
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16561-5. PubMed ID: 18922772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin.
    Balashov SP; Imasheva ES; Lanyi JK
    Biochemistry; 2006 Sep; 45(36):10998-1004. PubMed ID: 16953586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya.
    Jung KH
    Photochem Photobiol; 2007; 83(1):63-9. PubMed ID: 16968113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and evolutionary aspects of microbial sensory rhodopsins.
    Inoue K; Tsukamoto T; Sudo Y
    Biochim Biophys Acta; 2014 May; 1837(5):562-77. PubMed ID: 23732219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin.
    Balashov SP; Imasheva ES; Wang JM; Lanyi JK
    Biophys J; 2008 Sep; 95(5):2402-14. PubMed ID: 18515390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory.
    Schapiro I; Ruhman S
    Biochim Biophys Acta; 2014 May; 1837(5):589-97. PubMed ID: 24099700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal water molecules of archaeal rhodopsins (Review).
    Furutani Y; Kandori H
    Mol Membr Biol; 2002; 19(4):257-65. PubMed ID: 12512772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoselective ultrafast investigation of xanthorhodopsin and its carotenoid antenna salinixanthin.
    Zhu J; Gdor I; Smolensky E; Friedman N; Sheves M; Ruhman S
    J Phys Chem B; 2010 Mar; 114(8):3038-45. PubMed ID: 20146526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization.
    Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H
    Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors.
    Klare JP; Chizhov I; Engelhard M
    Results Probl Cell Differ; 2008; 45():73-122. PubMed ID: 17898961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal proteins - you can teach an old dog new tricks.
    Heberle J; Deupi X; Schertler G
    Biochim Biophys Acta; 2014 May; 1837(5):531-2. PubMed ID: 24582542
    [No Abstract]   [Full Text] [Related]  

  • 18. Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore.
    Sudo Y; Furutani Y; Wada A; Ito M; Kamo N; Kandori H
    J Am Chem Soc; 2005 Nov; 127(46):16036-7. PubMed ID: 16287285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R; Köhler T; Lenz MO; Bamberg E; Kalmbach R; Engelhard M; Wachtveitl J
    Biochemistry; 2005 Feb; 44(6):1800-6. PubMed ID: 15697205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna.
    Balashov SP; Imasheva ES; Boichenko VA; Antón J; Wang JM; Lanyi JK
    Science; 2005 Sep; 309(5743):2061-4. PubMed ID: 16179480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.