These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2333143)

  • 1. Antidromic firing occurs spontaneously on thalamic relay neurons: triggering of ectopic action potentials by somatic intrinsic burst discharges.
    Pinault D
    Neuroscience; 1990; 34(2):281-92. PubMed ID: 2333143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antidromic firing occurs spontaneously on thalamic relay neurons: triggering of somatic intrinsic burst discharges by ectopic action potentials.
    Pinault D; Pumain R
    Neuroscience; 1989; 31(3):625-37. PubMed ID: 2594194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals.
    Pinault D
    Brain Res Brain Res Rev; 1995 Jul; 21(1):42-92. PubMed ID: 8547954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects.
    Huguenard JR; Prince DA
    J Neurosci; 1994 Sep; 14(9):5485-502. PubMed ID: 8083749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional implications of burst firing and single spike activity in lateral geniculate relay neurons.
    McCormick DA; Feeser HR
    Neuroscience; 1990; 39(1):103-13. PubMed ID: 2089273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts.
    Hu H; Agmon A
    J Neurosci; 2016 Jun; 36(26):6906-16. PubMed ID: 27358449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ectopic axonal firing in an epileptic cortical focus is not triggered by thalamocortical volleys during the interictal stage.
    Pinault D
    Brain Res; 1992 Mar; 576(1):175-80. PubMed ID: 1515910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-tetanic excitability changes and ectopic discharges in a human motor axon.
    Bostock H; Bergmans J
    Brain; 1994 Oct; 117 ( Pt 5)():913-28. PubMed ID: 7953601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical and thalamic cellular correlates of electroencephalographic burst-suppression.
    Steriade M; Amzica F; Contreras D
    Electroencephalogr Clin Neurophysiol; 1994 Jan; 90(1):1-16. PubMed ID: 7509269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex.
    Thomson AM; West DC
    Neuroscience; 1993 May; 54(2):329-46. PubMed ID: 8336828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs.
    Yi G; Grill WM
    J Neural Eng; 2018 Oct; 15(5):056001. PubMed ID: 29893711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-dependent processing of sensory stimuli by thalamic reticular neurons.
    Hartings JA; Temereanca S; Simons DJ
    J Neurosci; 2003 Jun; 23(12):5264-71. PubMed ID: 12832551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamocortical relay neurons: antidromic invasion of spikes from a cortical epileptogenic focus.
    Gutnick MJ; Prince DA
    Science; 1972 Apr; 176(4033):424-6. PubMed ID: 4337289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states.
    Glenn LL; Steriade M
    J Neurosci; 1982 Oct; 2(10):1387-404. PubMed ID: 7119864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of the electrophysiological activity in sympathetic ganglia infected with a neurotropic virus. I. Presynaptic origin of the spontaneous bioelectric activity.
    Kiraly M; Dolivo M
    Brain Res; 1982 May; 240(1):43-54. PubMed ID: 7093720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thalamic stimulation largely elicits orthodromic, rather than antidromic, cortical activation in an auditory thalamocortical slice.
    Rose HJ; Metherate R
    Neuroscience; 2001; 106(2):331-40. PubMed ID: 11566504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the anterior intralaminar nuclei and N-methyl D-aspartate receptors in the generation of spontaneous bursts in rat neocortical neurones.
    Fox K; Armstrong-James M
    Exp Brain Res; 1986; 63(3):505-18. PubMed ID: 3019750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: in vivo electrophysiology.
    Sawyer SF; Young SJ; Groves PM; Tepper JM
    Neuroscience; 1994 Dec; 63(3):711-24. PubMed ID: 7898672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further study of soma, dendrite, and axon excitation in single neurons.
    EYZAGUIRRE C; KUFFLER SW
    J Gen Physiol; 1955 Sep; 39(1):121-53. PubMed ID: 13252238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.