These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2333155)

  • 1. Green fluorescent latex microspheres: a new retrograde tracer.
    Katz LC; Iarovici DM
    Neuroscience; 1990; 34(2):511-20. PubMed ID: 2333155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex.
    Katz LC; Burkhalter A; Dreyer WJ
    Nature; 1984 Aug 9-15; 310(5977):498-500. PubMed ID: 6205278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of retrogradely transported fluorescent latex microspheres in rat lumbosacral ventral root axons following peripheral crush injury: a light and electron microscopic study.
    Persson HG; Gatzinsky KP
    Brain Res; 1993 Dec; 630(1-2):115-24. PubMed ID: 8118679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of cortico-visual neurons projecting to the pons in the cat. A retrograde labelling study with rhodamine latex microspheres.
    Pérez-Samartín AL; Doñate-Oliver F
    Histol Histopathol; 1993 Jan; 8(1):167-71. PubMed ID: 8443428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscopic visualization of fluorescent microspheres used as a neuronal tracer.
    Egensperger R; Holländer H
    J Neurosci Methods; 1988 Apr; 23(3):181-6. PubMed ID: 3367655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent latex microspheres as a retrograde tracer in the peripheral nervous system.
    Colin W; Donoff RB; Foote WE
    Brain Res; 1989 May; 486(2):334-9. PubMed ID: 2659138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focal delivery of neurotrophins into the central nervous system using fluorescent latex microspheres.
    Riddle DR; Katz LC; Lo DC
    Biotechniques; 1997 Nov; 23(5):928-34, 936-7. PubMed ID: 9383561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones.
    Richmond FJ; Gladdy R; Creasy JL; Kitamura S; Smits E; Thomson DB
    J Neurosci Methods; 1994 Jul; 53(1):35-46. PubMed ID: 7527476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the use of retrograde tracers for identification of axon collaterals with multiple fluorescent retrograde tracers.
    Schofield BR; Schofield RM; Sorensen KA; Motts SD
    Neuroscience; 2007 May; 146(2):773-83. PubMed ID: 17379419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent latex microspheres for retrograde tracing of neurons in mouse basal forebrain combined with immunocytochemistry: a methodical approach.
    Härtig W; Paulke BR; Brückner G
    Acta Histochem Suppl; 1992; 42():261-5. PubMed ID: 1584975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further studies on the use of the fluorescent retrograde tracer True Blue in combination with monoamine histochemistry.
    Skagerberg G; Björklund A; Lindvall O
    J Neurosci Methods; 1985 Jun; 14(1):25-40. PubMed ID: 4033187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous use of retrograde fluorescent tracers and fluorescence histochemistry for convenient and precise mapping of monoaminergic projections and collateral arrangements in the CNS.
    Björklund A; Skagerberg G
    J Neurosci Methods; 1979 Oct; 1(3):261-77. PubMed ID: 544971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of novel histochemical tracers for localizing brain connectivity and pathology.
    Schmued LC
    Brain Res; 2016 Aug; 1645():31-5. PubMed ID: 27155454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous wide-field imaging and spectroscopy of localized fluorophores.
    Blab GA; Oellerich S; Schumm R; Schmidt T
    Opt Lett; 2004 Apr; 29(7):727-9. PubMed ID: 15072372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bruch's membrane allows unhindered passage of up to 2 μm latex beads in an in vivo porcine model.
    Sørensen NB; Christiansen AT; Kjær TW; Klemp K; la Cour M; Heegaard S; Kiilgaard JF
    Exp Eye Res; 2019 Mar; 180():1-7. PubMed ID: 30468719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Penetration into solid tumor tissue of fluorescent latex microspheres: a mimic of liposome particles.
    Pan XQ; Lee RJ; Ratnam M
    Anticancer Res; 2004; 24(5A):3005-8. PubMed ID: 15517908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum--III. Efferent projecting graft neurons and their relation to host afferents within the grafts.
    Wictorin K; Simerly RB; Isacson O; Swanson LW; Björklund A
    Neuroscience; 1989; 30(2):313-30. PubMed ID: 2747920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoro-Green and Fluoro-Red: two new fluorescent retrograde tracers with a number of unique properties.
    Dong K; Qu T; Ahmed FA; Zhang L; Yamada K; Guison NG; Miller M; Yamadori T
    Brain Res; 1996 Oct; 736(1-2):61-7. PubMed ID: 8930309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres.
    Cornwall J; Phillipson OT
    J Neurosci Methods; 1988 May; 24(1):1-9. PubMed ID: 3386298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of projections from the midbrain raphe nuclei to the hypothalamic paraventricular nucleus in the rat: a combined retrograde and anterograde tracing study.
    Larsen PJ; Hay-Schmidt A; Vrang N; Mikkelsen JD
    Neuroscience; 1996 Feb; 70(4):963-88. PubMed ID: 8848177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.