These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 23332028)
1. The proteome of exudates from germinating Lupinus albus seeds is secreted through a selective dual-step process and contains proteins involved in plant defence. Scarafoni A; Ronchi A; Prinsi B; Espen L; Assante G; Venturini G; Duranti M FEBS J; 2013 Mar; 280(6):1443-59. PubMed ID: 23332028 [TBL] [Abstract][Full Text] [Related]
2. Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.). Ogura T; Ogihara J; Sunairi M; Takeishi H; Aizawa T; Olivos-Trujillo MR; Maureira-Butler IJ; Salvo-Garrido HE Proteomics; 2014 Jun; 14(12):1543-6. PubMed ID: 24723484 [TBL] [Abstract][Full Text] [Related]
3. Proteome of Soybean Seed Exudates Contains Plant Defense-Related Proteins Active against the Root-Knot Nematode Meloidogyne incognita. Rocha RO; Morais JK; Oliveira JT; Oliveira HD; Sousa DO; Souza CE; Moreno FB; Monteiro-Moreira AC; de Souza Júnior JD; de Sá MF; Vasconcelos IM J Agric Food Chem; 2015 Jun; 63(22):5335-43. PubMed ID: 26034922 [TBL] [Abstract][Full Text] [Related]
4. Proteome reorganization and amino acid metabolism during germination and seedling establishment in Lupinus albus. Angermann C; Heinemann B; Hansen J; Töpfer N; Braun HP; Hildebrandt TM J Exp Bot; 2024 Aug; 75(16):4891-4903. PubMed ID: 38686677 [TBL] [Abstract][Full Text] [Related]
5. Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. Han C; Yin X; He D; Yang P PLoS One; 2013; 8(2):e56947. PubMed ID: 23460823 [TBL] [Abstract][Full Text] [Related]
6. gamma-Conglutin, the Lupinus albus XEGIP-like protein, whose expression is elicited by chitosan, lacks of the typical inhibitory activity against GH12 endo-glucanases. Scarafoni A; Ronchi A; Duranti M Phytochemistry; 2010 Feb; 71(2-3):142-8. PubMed ID: 19962718 [TBL] [Abstract][Full Text] [Related]
7. Combined 2D electrophoretic approaches for the study of white lupin mature seed storage proteome. Magni C; Scarafoni A; Herndl A; Sessa F; Prinsi B; Espen L; Duranti M Phytochemistry; 2007 Apr; 68(7):997-1007. PubMed ID: 17320919 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox Sghaier-Hammami B; B M Hammami S; Baazaoui N; Gómez-Díaz C; Jorrín-Novo JV Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32660160 [TBL] [Abstract][Full Text] [Related]
9. Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Xia Q; Ponnaiah M; Cueff G; Rajjou L; Prodhomme D; Gibon Y; Bailly C; Corbineau F; Meimoun P; El-Maarouf-Bouteau H Plant Sci; 2018 Apr; 269():118-125. PubMed ID: 29606208 [TBL] [Abstract][Full Text] [Related]
10. Response of germinating barley seeds to Fusarium graminearum: The first molecular insight into Fusarium seedling blight. Yang F; Svensson B; Finnie C Plant Physiol Biochem; 2011 Nov; 49(11):1362-8. PubMed ID: 21798752 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of rice (Oryza sativa) seeds during germination. Yang P; Li X; Wang X; Chen H; Chen F; Shen S Proteomics; 2007 Sep; 7(18):3358-68. PubMed ID: 17849412 [TBL] [Abstract][Full Text] [Related]
12. Proteomics of seed development, desiccation tolerance, germination and vigor. Wang WQ; Liu SJ; Song SQ; Møller IM Plant Physiol Biochem; 2015 Jan; 86():1-15. PubMed ID: 25461695 [TBL] [Abstract][Full Text] [Related]
13. Proteomic Characterisation of Lupin ( Al-Saedi N; Agarwal M; Ma W; Islam S; Ren Y Molecules; 2020 Apr; 25(8):. PubMed ID: 32295067 [TBL] [Abstract][Full Text] [Related]
14. Effect of Germination and Fermentation on Carbohydrate Composition of Australian Sweet Lupin and Soybean Seeds and Flours. Kaczmarska KT; Chandra-Hioe MV; Zabaras D; Frank D; Arcot J J Agric Food Chem; 2017 Nov; 65(46):10064-10073. PubMed ID: 29058428 [TBL] [Abstract][Full Text] [Related]
15. Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Bønsager BC; Finnie C; Roepstorff P; Svensson B Proteomics; 2007 Dec; 7(24):4528-40. PubMed ID: 18022942 [TBL] [Abstract][Full Text] [Related]
16. Microbial-induced carbon competition in the spermosphere leads to pathogen and disease suppression in a municipal biosolids compost. Chen MH; Nelson EB Phytopathology; 2012 Jun; 102(6):588-96. PubMed ID: 22352306 [TBL] [Abstract][Full Text] [Related]
17. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development. Barvkar VT; Pardeshi VC; Kale SM; Kadoo NY; Giri AP; Gupta VS J Proteome Res; 2012 Dec; 11(12):6264-76. PubMed ID: 23153172 [TBL] [Abstract][Full Text] [Related]
18. Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control. Windstam S; Nelson EB Appl Environ Microbiol; 2008 Jul; 74(14):4292-9. PubMed ID: 18515478 [TBL] [Abstract][Full Text] [Related]
19. Influence of lupin (Lupinus luteus L. cv. 4492 and Lupinus angustifolius L. var. zapaton) and fenugreek (Trigonella foenum-graecum L.) germination on microbial population and biogenic amines. Martínez-Villaluenga C; Gulewicz P; Pérez A; Frías J; Vidal-Valverde C J Agric Food Chem; 2006 Sep; 54(19):7391-8. PubMed ID: 16968110 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. Yang MF; Liu YJ; Liu Y; Chen H; Chen F; Shen SH J Proteome Res; 2009 Mar; 8(3):1441-51. PubMed ID: 19152324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]