These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23332077)

  • 21. Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model.
    Ryan GL; Holz D; Yamashiro S; Taniguchi D; Watanabe N; Vavylonis D
    Cytoskeleton (Hoboken); 2017 Dec; 74(12):490-503. PubMed ID: 28752950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding actin turnover - no longer a mere speckle on the horizon.
    Launay S
    Trends Cell Biol; 2002 May; 12(5):212. PubMed ID: 12062161
    [No Abstract]   [Full Text] [Related]  

  • 23. Can filament treadmilling alone account for the F-actin turnover in lamellipodia?
    Miyoshi T; Watanabe N
    Cytoskeleton (Hoboken); 2013 Apr; 70(4):179-90. PubMed ID: 23341338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales.
    Yamashiro S; Mizuno H; Smith MB; Ryan GL; Kiuchi T; Vavylonis D; Watanabe N
    Mol Biol Cell; 2014 Apr; 25(7):1010-24. PubMed ID: 24501425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization.
    Nobezawa D; Ikeda SI; Wada E; Nagano T; Miyata H
    Biomed Res Int; 2017; 2017():7804251. PubMed ID: 28246604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin.
    Jurado C; Haserick JR; Lee J
    Mol Biol Cell; 2005 Feb; 16(2):507-18. PubMed ID: 15548591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitable actin dynamics in lamellipodial protrusion and retraction.
    Ryan GL; Petroccia HM; Watanabe N; Vavylonis D
    Biophys J; 2012 Apr; 102(7):1493-502. PubMed ID: 22500749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling capping protein FRAP and CALI experiments reveals in vivo regulation of actin dynamics.
    Kapustina M; Vitriol E; Elston TC; Loew LM; Jacobson K
    Cytoskeleton (Hoboken); 2010 Aug; 67(8):519-34. PubMed ID: 20623665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells.
    McGrath JL; Tardy Y; Dewey CF; Meister JJ; Hartwig JH
    Biophys J; 1998 Oct; 75(4):2070-8. PubMed ID: 9746549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. F- and G-actin concentrations in lamellipodia of moving cells.
    Koestler SA; Rottner K; Lai F; Block J; Vinzenz M; Small JV
    PLoS One; 2009; 4(3):e4810. PubMed ID: 19277198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of actin FLAP dynamics in the leading lamella.
    Kuznetsov IR; Herant M; Dembo M
    PLoS One; 2010 Apr; 5(4):e10082. PubMed ID: 20419164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of tools for live cell imaging of actin network architecture.
    Belin BJ; Goins LM; Mullins RD
    Bioarchitecture; 2014; 4(6):189-202. PubMed ID: 26317264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LIM kinase has a dual role in regulating lamellipodium extension by decelerating the rate of actin retrograde flow and the rate of actin polymerization.
    Ohashi K; Fujiwara S; Watanabe T; Kondo H; Kiuchi T; Sato M; Mizuno K
    J Biol Chem; 2011 Oct; 286(42):36340-51. PubMed ID: 21868383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging.
    Millius A; Watanabe N; Weiner OD
    J Cell Sci; 2012 Mar; 125(Pt 5):1165-76. PubMed ID: 22349699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-Term Fluorescence Recovery After Photobleaching (FRAP).
    Saito T; Matsunaga D; Deguchi S
    Methods Mol Biol; 2023; 2600():311-322. PubMed ID: 36587107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growing actin networks form lamellipodium and lamellum by self-assembly.
    Huber F; Käs J; Stuhrmann B
    Biophys J; 2008 Dec; 95(12):5508-23. PubMed ID: 18708450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane tension controls adhesion positioning at the leading edge of cells.
    Pontes B; Monzo P; Gole L; Le Roux AL; Kosmalska AJ; Tam ZY; Luo W; Kan S; Viasnoff V; Roca-Cusachs P; Tucker-Kellogg L; Gauthier NC
    J Cell Biol; 2017 Sep; 216(9):2959-2977. PubMed ID: 28687667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphoinositide binding regulates alpha-actinin dynamics: mechanism for modulating cytoskeletal remodeling.
    Fraley TS; Pereira CB; Tran TC; Singleton C; Greenwood JA
    J Biol Chem; 2005 Apr; 280(15):15479-82. PubMed ID: 15710624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reorganization of the actin cytoskeleton in the protruding lamellae of human fibroblasts.
    Safiejko-Mroczka B; Bell PB
    Cell Motil Cytoskeleton; 2001 Sep; 50(1):13-32. PubMed ID: 11746669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching.
    Saito T; Matsunaga D; Deguchi S
    PLoS One; 2022; 17(11):e0276909. PubMed ID: 36342915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.