BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 23332101)

  • 1. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase.
    Meints CE; Simtchouk S; Wolthers KR
    FEBS J; 2013 Mar; 280(6):1460-74. PubMed ID: 23332101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase.
    Meints CE; Parke SM; Wolthers KR
    Arch Biochem Biophys; 2014 Apr; 547():18-26. PubMed ID: 24589657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase.
    Meints CE; Gustafsson FS; Scrutton NS; Wolthers KR
    Biochemistry; 2011 Dec; 50(51):11131-42. PubMed ID: 22097960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL; Kasper CB
    Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR; Lou X; Toogood HS; Leys D; Scrutton NS
    Biochemistry; 2007 Oct; 46(42):11833-44. PubMed ID: 17892308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases.
    Gutierrez A; Doehr O; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2000 Dec; 39(51):15990-9. PubMed ID: 11123926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of electron flux in cytochrome P450 reductases reveals differences in rate-determining steps in plant and mammalian enzymes.
    Whitelaw DA; Tonkin R; Meints CE; Wolthers KR
    Arch Biochem Biophys; 2015 Oct; 584():107-15. PubMed ID: 26361974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains.
    Wolthers KR; Basran J; Munro AW; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding.
    Gutierrez A; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2002 Apr; 41(14):4626-37. PubMed ID: 11926825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains.
    Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The closed and compact domain organization of the 70-kDa human cytochrome P450 reductase in its oxidized state as revealed by NMR.
    Vincent B; Morellet N; Fatemi F; Aigrain L; Truan G; Guittet E; Lescop E
    J Mol Biol; 2012 Jul; 420(4-5):296-309. PubMed ID: 22543241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a functional human NADH-dependent cytochrome P450 system.
    Döhr O; Paine MJ; Friedberg T; Roberts GC; Wolf CR
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):81-6. PubMed ID: 11136248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.