BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23332320)

  • 1. Sulfobetaine as a zwitterionic mediator for 3D hydroxyapatite mineralization.
    Liu P; Song J
    Biomaterials; 2013 Mar; 34(10):2442-54. PubMed ID: 23332320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering.
    Liu P; Emmons E; Song J
    J Mater Chem B; 2014 Nov; 2(43):7524-7533. PubMed ID: 25558374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in situ poly(carboxybetaine) hydrogel for tissue engineering applications.
    Chien HW; Yu J; Li ST; Chen HY; Tsai WB
    Biomater Sci; 2017 Jan; 5(2):322-330. PubMed ID: 28050608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of Ti6Al4V substrates with well-defined zwitterionic polysulfobetaine brushes for improved surface mineralization.
    Liu P; Domingue E; Ayers DC; Song J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7141-52. PubMed ID: 24828749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zwitterionic starch-based hydrogel for the expansion and "stemness" maintenance of brown adipose derived stem cells.
    Dong D; Hao T; Wang C; Zhang Y; Qin Z; Yang B; Fang W; Ye L; Yao F; Li J
    Biomaterials; 2018 Mar; 157():149-160. PubMed ID: 29272722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.
    Jin Y; Kundu B; Cai Y; Kundu SC; Yao J
    Colloids Surf B Biointerfaces; 2015 Oct; 134():339-45. PubMed ID: 26209967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique.
    Antebi B; Cheng X; Harris JN; Gower LB; Chen XD; Ling J
    Tissue Eng Part C Methods; 2013 Jul; 19(7):487-96. PubMed ID: 23157544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal changes in peg hydrogel structure influence human mesenchymal stem cell proliferation and matrix mineralization.
    Nuttelman CR; Kloxin AM; Anseth KS
    Adv Exp Med Biol; 2006; 585():135-49. PubMed ID: 17120782
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites.
    Zhang L; Tang P; Xu M; Zhang W; Chai W; Wang Y
    Acta Biomater; 2010 Jun; 6(6):2189-99. PubMed ID: 20040387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable cross-linking agent.
    Arimura H; Ouchi T; Kishida A; Ohya Y
    J Biomater Sci Polym Ed; 2005; 16(11):1347-58. PubMed ID: 16370238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites.
    Song J; Saiz E; Bertozzi CR
    J Am Chem Soc; 2003 Feb; 125(5):1236-43. PubMed ID: 12553825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering.
    Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L
    J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired mineral-polymeric hybrid hyaluronic acid/poly (γ-glutamic acid) hydrogels as tunable scaffolds for stem cells differentiation.
    Liu S; Li P; Liu X; Wang P; Xue W; Ren Y; Yang R; Chi B; Ye Z
    Carbohydr Polym; 2021 Jul; 264():118048. PubMed ID: 33910750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds.
    Kumar PT; Srinivasan S; Lakshmanan VK; Tamura H; Nair SV; Jayakumar R
    Int J Biol Macromol; 2011 Jul; 49(1):20-31. PubMed ID: 21435350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations.
    Cui W; Li X; Xie C; Zhuang H; Zhou S; Weng J
    Biomaterials; 2010 Jun; 31(17):4620-9. PubMed ID: 20303582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and mineralization of a biocompatible double network hydrogel.
    Yang Q; Song F; Zou X; Liao L
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):431-443. PubMed ID: 28056727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermosensitive low molecular weight hydrogel as scaffold for tissue engineering.
    Ziane S; Schlaubitz S; Miraux S; Patwa A; Lalande C; Bilem I; Lepreux S; Rousseau B; Le Meins JF; Latxague L; Barthélémy P; Chassande O
    Eur Cell Mater; 2012 Feb; 23():147-60; discussion 160. PubMed ID: 22370797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.