These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 23333340)
1. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action. Wang J; Xia XM; Wang HY; Li PP; Wang KY Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340 [TBL] [Abstract][Full Text] [Related]
2. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea. Maung CEH; Lee HG; Cho JY; Kim KY World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. Gao P; Qin J; Li D; Zhou S PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Soylu EM; Kurt S; Soylu S Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220 [TBL] [Abstract][Full Text] [Related]
6. Primary Mode of Action of the Novel Sulfonamide Fungicide against Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447 [No Abstract] [Full Text] [Related]
7. Effects of linalool on Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396 [TBL] [Abstract][Full Text] [Related]
8. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15. Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053 [TBL] [Abstract][Full Text] [Related]
9. Ultra-Structural Alterations in Youssef K; Roberto SR; de Oliveira AG Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597236 [TBL] [Abstract][Full Text] [Related]
11. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Chen H; Xiao X; Wang J; Wu L; Zheng Z; Yu Z Biotechnol Lett; 2008 May; 30(5):919-23. PubMed ID: 18165869 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Qin G; Zong Y; Chen Q; Hua D; Tian S Int J Food Microbiol; 2010 Mar; 138(1-2):145-50. PubMed ID: 20060611 [TBL] [Abstract][Full Text] [Related]
13. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea. Zhang Y; Wang C; Su P; Liao X PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973 [TBL] [Abstract][Full Text] [Related]
14. Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester. Vicedo B; de la O Leyva M; Flors V; Finiti I; Del Amo G; Walters D; Real MD; García-Agustín P; González-Bosch C Arch Microbiol; 2006 Jan; 184(5):316-26. PubMed ID: 16261314 [TBL] [Abstract][Full Text] [Related]
15. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea. Ayoub F; Ben Oujji N; Chebli B; Ayoub M; Hafidi A; Salghi R; Jodeh S Microb Pathog; 2017 Apr; 105():74-80. PubMed ID: 28192222 [TBL] [Abstract][Full Text] [Related]
16. The mechanistic insights of essential oil of Mentha piperita to control Botrytis cinerea and the prospection of lipid nanoparticles to its application. Fuentes JM; Jofré I; Tortella G; Benavides-Mendoza A; Diez MC; Rubilar O; Fincheira P Microbiol Res; 2024 Sep; 286():127792. PubMed ID: 38852300 [TBL] [Abstract][Full Text] [Related]
17. Biological control of Botrytis gray mould on tomato cultivated in greenhouse. Fiume F; Fiume G Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837 [TBL] [Abstract][Full Text] [Related]
18. Antifungal effect of 405-nm light on Botrytis cinerea. Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427 [TBL] [Abstract][Full Text] [Related]
19. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470 [TBL] [Abstract][Full Text] [Related]
20. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea. Sun G; Wang H; Shi B; Shangguan N; Wang Y; Ma Q Pestic Biochem Physiol; 2017 Nov; 143():191-198. PubMed ID: 29183591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]