BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 23333709)

  • 1. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):126-41. PubMed ID: 23333709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug nanocrystals in the commercial pharmaceutical development process.
    Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):142-56. PubMed ID: 23000841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosizing techniques for improving bioavailability of drugs.
    Al-Kassas R; Bansal M; Shaw J
    J Control Release; 2017 Aug; 260():202-212. PubMed ID: 28603030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches.
    Salazar J; Ghanem A; Müller RH; Möschwitzer JP
    Eur J Pharm Biopharm; 2012 May; 81(1):82-90. PubMed ID: 22233547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.
    Xia D; Gan Y; Cui F
    Curr Pharm Des; 2014; 20(3):408-35. PubMed ID: 23651396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Dec; 458(2):315-23. PubMed ID: 24148667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives.
    Shegokar R; Müller RH
    Int J Pharm; 2010 Oct; 399(1-2):129-39. PubMed ID: 20674732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of pure drug nanocrystals and nano co-crystals by confinement methods.
    Fontana F; Figueiredo P; Zhang P; Hirvonen JT; Liu D; Santos HA
    Adv Drug Deliv Rev; 2018 Jun; 131():3-21. PubMed ID: 29738786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
    Abuzar SM; Hyun SM; Kim JH; Park HJ; Kim MS; Park JS; Hwang SJ
    Int J Pharm; 2018 Mar; 538(1-2):1-13. PubMed ID: 29278733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel high-pressure precipitation tandem homogenization technology for drug nanocrystals production - a case study with ursodeoxycholic acid.
    Li Y; Wang Y; Yue PF; Hu PY; Wu ZF; Yang M; Yuan HL
    Pharm Dev Technol; 2014 Sep; 19(6):662-70. PubMed ID: 23869484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmaceutical and pharmacokinetic characteristics of different types of fenofibrate nanocrystals prepared by different bottom-up approaches.
    Zhang H; Meng Y; Wang X; Dai W; Wang X; Zhang Q
    Drug Deliv; 2014 Dec; 21(8):588-94. PubMed ID: 24320001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance comparison of two novel combinative particle-size-reduction technologies.
    Salazar J; Müller RH; Möschwitzer JP
    J Pharm Sci; 2013 May; 102(5):1636-49. PubMed ID: 23436640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmaceutical nanocrystals: production by wet milling and applications.
    Malamatari M; Taylor KMG; Malamataris S; Douroumis D; Kachrimanis K
    Drug Discov Today; 2018 Mar; 23(3):534-547. PubMed ID: 29326082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocrystal Based Drug Delivery System: Conventional and Current Scenario.
    Thakkar S; Shah V; Misra M; Kalia K
    Recent Pat Nanotechnol; 2017 Jul; 11(2):130-145. PubMed ID: 27758683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery.
    Pawar VK; Singh Y; Meher JG; Gupta S; Chourasia MK
    J Control Release; 2014 Jun; 183():51-66. PubMed ID: 24667572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability.
    Morakul B; Suksiriworapong J; Leanpolchareanchai J; Junyaprasert VB
    Int J Pharm; 2013 Nov; 457(1):187-96. PubMed ID: 24076396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of nanosuspensions as a tool to improve drug bioavailability: focus on topical delivery.
    Lai F; Schlich M; Pireddu R; Corrias F; Fadda AM; Sinico C
    Curr Pharm Des; 2015; 21(42):6089-103. PubMed ID: 26503149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug nanocrystals - Versatile option for formulation of poorly soluble materials.
    Peltonen L; Hirvonen J
    Int J Pharm; 2018 Feb; 537(1-2):73-83. PubMed ID: 29262301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.