These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 23333770)
1. Clinical versus pre-clinical FE models for vertebral body strength predictions. Pahr DH; Schwiedrzik J; Dall'Ara E; Zysset PK J Mech Behav Biomed Mater; 2014 May; 33():76-83. PubMed ID: 23333770 [TBL] [Abstract][Full Text] [Related]
2. HR-pQCT-based homogenised finite element models provide quantitative predictions of experimental vertebral body stiffness and strength with the same accuracy as μFE models. Pahr DH; Dall'Ara E; Varga P; Zysset PK Comput Methods Biomech Biomed Engin; 2012; 15(7):711-20. PubMed ID: 21480081 [TBL] [Abstract][Full Text] [Related]
3. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Dall'Ara E; Pahr D; Varga P; Kainberger F; Zysset P Osteoporos Int; 2012 Feb; 23(2):563-72. PubMed ID: 21344244 [TBL] [Abstract][Full Text] [Related]
4. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. Luisier B; Dall'Ara E; Pahr DH J Mech Behav Biomed Mater; 2014 Apr; 32():287-299. PubMed ID: 24508715 [TBL] [Abstract][Full Text] [Related]
5. Fast estimation of Colles' fracture load of the distal section of the radius by homogenized finite element analysis based on HR-pQCT. Hosseini HS; Dünki A; Fabech J; Stauber M; Vilayphiou N; Pahr D; Pretterklieber M; Wandel J; Rietbergen BV; Zysset PK Bone; 2017 Apr; 97():65-75. PubMed ID: 28069517 [TBL] [Abstract][Full Text] [Related]
6. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength. Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795 [TBL] [Abstract][Full Text] [Related]
7. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Crawford RP; Cann CE; Keaveny TM Bone; 2003 Oct; 33(4):744-50. PubMed ID: 14555280 [TBL] [Abstract][Full Text] [Related]
8. Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections. Varga P; Dall'Ara E; Pahr DH; Pretterklieber M; Zysset PK Biomech Model Mechanobiol; 2011 Jul; 10(4):431-44. PubMed ID: 20686811 [TBL] [Abstract][Full Text] [Related]
9. Validation of distal radius failure load predictions by homogenized- and micro-finite element analyses based on second-generation high-resolution peripheral quantitative CT images. Arias-Moreno AJ; Hosseini HS; Bevers M; Ito K; Zysset P; van Rietbergen B Osteoporos Int; 2019 Jul; 30(7):1433-1443. PubMed ID: 30997546 [TBL] [Abstract][Full Text] [Related]
10. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Buckley JM; Loo K; Motherway J Bone; 2007 Mar; 40(3):767-74. PubMed ID: 17174619 [TBL] [Abstract][Full Text] [Related]
11. Removal of the cortical endplates has little effect on ultimate load and damage distribution in QCT-based voxel models of human lumbar vertebrae under axial compression. Maquer G; Dall'Ara E; Zysset PK J Biomech; 2012 Jun; 45(9):1733-8. PubMed ID: 22503577 [TBL] [Abstract][Full Text] [Related]
12. Finite element modeling of the human thoracolumbar spine. Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762 [TBL] [Abstract][Full Text] [Related]
13. Quantitative computed tomography-based predictions of vertebral strength in anterior bending. Buckley JM; Cheng L; Loo K; Slyfield C; Xu Z Spine (Phila Pa 1976); 2007 Apr; 32(9):1019-27. PubMed ID: 17450078 [TBL] [Abstract][Full Text] [Related]
14. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582 [TBL] [Abstract][Full Text] [Related]
15. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations. Panyasantisuk J; Dall'Ara E; Pretterklieber M; Pahr DH; Zysset PK Med Eng Phys; 2018 Sep; 59():36-42. PubMed ID: 30131112 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique. Zeinali A; Hashemi B; Akhlaghpoor S Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969 [TBL] [Abstract][Full Text] [Related]
17. Unified validation of a refined second-generation HR-pQCT based homogenized finite element method to predict strength of the distal segments in radius and tibia. Schenk D; Indermaur M; Simon M; Voumard B; Varga P; Pretterklieber M; Lippuner K; Zysset P J Mech Behav Biomed Mater; 2022 Jul; 131():105235. PubMed ID: 35588681 [TBL] [Abstract][Full Text] [Related]
18. Influence of 3D QCT scan protocol on the QCT-based finite element models of human vertebral cancellous bone. Lu Y; Engelke K; Püschel K; Morlock MM; Huber G Med Eng Phys; 2014 Aug; 36(8):1069-73. PubMed ID: 24894031 [TBL] [Abstract][Full Text] [Related]
19. Proximal Tibia Bone Stiffness and Strength in HR-pQCT- and QCT-Based Finite Element Models. Knowles NK; Whittier DE; Besler BA; Boyd SK Ann Biomed Eng; 2021 Sep; 49(9):2389-2398. PubMed ID: 33977411 [TBL] [Abstract][Full Text] [Related]
20. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Chevalier Y; Charlebois M; Pahr D; Varga P; Heini P; Schneider E; Zysset P Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):477-87. PubMed ID: 18608338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]