BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23334026)

  • 1. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.
    Bharadwaj A; Ting YP
    Bioresour Technol; 2013 Feb; 130():673-80. PubMed ID: 23334026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.
    Amiri F; Yaghmaei S; Mousavi SM
    Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load.
    Zhao L; Yang D; Zhu NW
    J Hazard Mater; 2008 Dec; 160(2-3):648-54. PubMed ID: 18430515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst.
    Santhiya D; Ting YP
    J Biotechnol; 2006 Jan; 121(1):62-74. PubMed ID: 16105700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.
    Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H
    Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    J Hazard Mater; 2008 Apr; 152(3):1082-91. PubMed ID: 17825485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
    Kim HI; Park KH; Mishra D
    J Hazard Mater; 2009 Jul; 166(2-3):1540-4. PubMed ID: 19121897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology.
    Srichandan H; Pathak A; Kim DJ; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1740-53. PubMed ID: 25320861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
    Sharma M; Bisht V; Singh B; Jain P; Mandal AK; Lal B; Sarma PM
    Indian J Exp Biol; 2015 Jun; 53(6):388-94. PubMed ID: 26155679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile acidianus brierleyi.
    Konishi Y; Asai S; Tokushige M; Suzuki T
    Biotechnol Prog; 1999 Jul; 15(4):681-8. PubMed ID: 10441359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi.
    Konishi Y; Yoshida S; Asai S
    Biotechnol Bioeng; 1995 Dec; 48(6):592-600. PubMed ID: 18623527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of spent catalyst from the nitrogenous fertilizer industry--a review of the available methods of regeneration, recovery and disposal.
    Singh B
    J Hazard Mater; 2009 Aug; 167(1-3):24-37. PubMed ID: 19286315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms.
    Mishra D; Ahn JG; Kim DJ; Roychaudhury G; Ralph DE
    J Hazard Mater; 2009 Aug; 167(1-3):1231-6. PubMed ID: 19286311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of metal recovery from spent petroleum catalysts and ash.
    Akcil A; VegliĆ² F; Ferella F; Okudan MD; Tuncuk A
    Waste Manag; 2015 Nov; 45():420-33. PubMed ID: 26188611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal leaching from refinery waste hydroprocessing catalyst.
    Marafi M; Rana MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):951-959. PubMed ID: 29775124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
    Pradhan D; Kim DJ; Roychaudhury G; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):476-82. PubMed ID: 20390893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of yeast extract supplementation in leach solution on bioleaching rate of pyrite by acidophilic thermophile acidianus brierleyi.
    Konishi Y; Yoshida S; Asai S
    Biotechnol Bioeng; 1998 Jun; 58(6):663-7. PubMed ID: 10099306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.