These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23334033)

  • 21. Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor.
    Wang YZ; Liao Q; Zhu X; Tian X; Zhang C
    Bioresour Technol; 2010 Jun; 101(11):4034-41. PubMed ID: 20137910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens.
    Choi WJ; Hartono MR; Chan WH; Yeo SS
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1255-64. PubMed ID: 21212944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.
    Adessi A; Concato M; Sanchini A; Rossi F; De Philippis R
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2917-26. PubMed ID: 26762392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5.
    Wu SC; Liou SZ; Lee CM
    Bioresour Technol; 2012 Jun; 113():44-50. PubMed ID: 22342035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii.
    Liu YP; Sun Y; Tan C; Li H; Zheng XJ; Jin KQ; Wang G
    Bioresour Technol; 2013 Aug; 142():384-9. PubMed ID: 23748086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry.
    Yazdani SS; Gonzalez R
    Curr Opin Biotechnol; 2007 Jun; 18(3):213-9. PubMed ID: 17532205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitigation of the inhibitory effect of soap by magnesium salt treatment of crude glycerol--a novel approach for enhanced biohydrogen production from the biodiesel industry waste.
    Sarma SJ; Brar SK; Le Bihan Y; Buelna G; Soccol CR
    Bioresour Technol; 2014 Jan; 151():49-53. PubMed ID: 24189384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.
    Mekjinda N; Ritchie RJ
    Waste Manag; 2015 Jan; 35():199-206. PubMed ID: 25465509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery.
    Nitayavardhana S; Khanal SK
    Bioresour Technol; 2011 May; 102(10):5808-14. PubMed ID: 21382713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates.
    Chen CY; Lu WB; Liu CH; Chang JS
    Bioresour Technol; 2008 Jun; 99(9):3609-16. PubMed ID: 17826982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics and Application of
    Li M; Ning P; Sun Y; Luo J; Yang J
    Front Bioeng Biotechnol; 2022; 10():897003. PubMed ID: 35646843
    [No Abstract]   [Full Text] [Related]  

  • 33. Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT.
    Pakpour F; Najafpour G; Tabatabaei M; Tohidfar M; Younesi H
    Bioprocess Biosyst Eng; 2014 May; 37(5):923-30. PubMed ID: 24078148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol.
    Fountoulakis MS; Manios T
    Bioresour Technol; 2009 Jun; 100(12):3043-7. PubMed ID: 19231165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.
    Lu H; Chen J; Jia Y; Cai M; Lee PKH
    Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production.
    Patil Y; Junghare M; Müller N
    Microb Biotechnol; 2017 Jan; 10(1):203-217. PubMed ID: 28004884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol.
    O'Grady J; Morgan JA
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):121-5. PubMed ID: 20976474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii.
    Anand P; Saxena RK
    N Biotechnol; 2012 Jan; 29(2):199-205. PubMed ID: 21689798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris.
    Gosse JL; Engel BJ; Hui JC; Harwood CS; Flickinger MC
    Biotechnol Prog; 2010; 26(4):907-18. PubMed ID: 20730752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioconversion characteristics of Rhodopseudomonas palustris CQK 01 entrapped in a photobioreactor for hydrogen production.
    Wang YZ; Liao Q; Zhu X; Chen R; Guo CL; Zhou J
    Bioresour Technol; 2013 May; 135():331-8. PubMed ID: 23127839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.