BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23334291)

  • 1. Conformational heterogeneity of the aspartate transporter Glt(Ph).
    Hänelt I; Wunnicke D; Bordignon E; Steinhoff HJ; Slotboom DJ
    Nat Struct Mol Biol; 2013 Feb; 20(2):210-4. PubMed ID: 23334291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational ensemble of the sodium-coupled aspartate transporter.
    Georgieva ER; Borbat PP; Ginter C; Freed JH; Boudker O
    Nat Struct Mol Biol; 2013 Feb; 20(2):215-21. PubMed ID: 23334289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Affinity and Slow Na+ Binding Precedes High Affinity Aspartate Binding in the Secondary-active Transporter GltPh.
    Hänelt I; Jensen S; Wunnicke D; Slotboom DJ
    J Biol Chem; 2015 Jun; 290(26):15962-72. PubMed ID: 25922069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of transport modulation by an extracellular loop in an archaeal excitatory amino acid transporter (EAAT) homolog.
    Mulligan C; Mindell JA
    J Biol Chem; 2013 Dec; 288(49):35266-76. PubMed ID: 24155238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energy simulations of ligand binding to the aspartate transporter Glt(Ph).
    Heinzelmann G; Baştuğ T; Kuyucak S
    Biophys J; 2011 Nov; 101(10):2380-8. PubMed ID: 22098736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport domain unlocking sets the uptake rate of an aspartate transporter.
    Akyuz N; Georgieva ER; Zhou Z; Stolzenberg S; Cuendet MA; Khelashvili G; Altman RB; Terry DS; Freed JH; Weinstein H; Boudker O; Blanchard SC
    Nature; 2015 Feb; 518(7537):68-73. PubMed ID: 25652997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM.
    Ruan Y; Miyagi A; Wang X; Chami M; Boudker O; Scheuring S
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1584-1588. PubMed ID: 28137870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
    Ryan RM; Kortt NC; Sirivanta T; Vandenberg RJ
    J Neurochem; 2010 Jul; 114(2):565-75. PubMed ID: 20477940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment.
    Arkhipova V; Guskov A; Slotboom DJ
    Nat Commun; 2020 Feb; 11(1):998. PubMed ID: 32081874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter.
    Boudker O; Ryan RM; Yernool D; Shimamoto K; Gouaux E
    Nature; 2007 Jan; 445(7126):387-93. PubMed ID: 17230192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer.
    McIlwain BC; Vandenberg RJ; Ryan RM
    J Biol Chem; 2015 Apr; 290(15):9780-8. PubMed ID: 25713135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh.
    Lezon TR; Bahar I
    Biophys J; 2012 Mar; 102(6):1331-40. PubMed ID: 22455916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph).
    Groeneveld M; Slotboom DJ
    Biochemistry; 2010 May; 49(17):3511-3. PubMed ID: 20349989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters.
    Erkens GB; Hänelt I; Goudsmits JM; Slotboom DJ; van Oijen AM
    Nature; 2013 Oct; 502(7469):119-23. PubMed ID: 24091978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters.
    Wang X; Boudker O
    Elife; 2020 Nov; 9():. PubMed ID: 33155546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for the subunit assembly of the primase from an archaeon Pyrococcus horikoshii.
    Ito N; Matsui I; Matsui E
    FEBS J; 2007 Mar; 274(5):1340-51. PubMed ID: 17286576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii.
    Ryan RM; Compton EL; Mindell JA
    J Biol Chem; 2009 Jun; 284(26):17540-8. PubMed ID: 19380583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport mechanism of a glutamate transporter homologue GltPh.
    Ji Y; Postis VL; Wang Y; Bartlam M; Goldman A
    Biochem Soc Trans; 2016 Jun; 44(3):898-904. PubMed ID: 27284058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the ATPPase subunit and its substrate-dependent association with the GATase subunit: a novel regulatory mechanism for a two-subunit-type GMP synthetase from Pyrococcus horikoshii OT3.
    Maruoka S; Horita S; Lee WC; Nagata K; Tanokura M
    J Mol Biol; 2010 Jan; 395(2):417-29. PubMed ID: 19900465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of prokaryotic glutamate transporters from Escherichia coli and Pyrococcus horikoshii.
    Raunser S; Appel M; Ganea C; Geldmacher-Kaufer U; Fendler K; Kühlbrandt W
    Biochemistry; 2006 Oct; 45(42):12796-805. PubMed ID: 17042498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.