These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23334558)

  • 1. Comprehensive studies on the tautomerization of glycine: a theoretical study.
    Kim CK; Park BH; Lee HW; Kim CK
    Org Biomol Chem; 2013 Feb; 11(8):1407-13. PubMed ID: 23334558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited state proton transfer in guanine in the gas phase and in water solution: a theoretical study.
    Shukla MK; Leszczynski J
    J Phys Chem A; 2005 Sep; 109(34):7775-80. PubMed ID: 16834154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of glyphosate zwitterions and conformational/tautomerism mechanism in aqueous solution: insights from
    Fliss O; Essalah K; Ben Fredj A
    Phys Chem Chem Phys; 2021 Dec; 23(46):26306-26323. PubMed ID: 34787605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization.
    Rahaman O; van Duin AC; Goddard WA; Doren DJ
    J Phys Chem B; 2011 Jan; 115(2):249-61. PubMed ID: 21166434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules.
    Takano Y; Houk KN
    J Chem Theory Comput; 2005 Jan; 1(1):70-7. PubMed ID: 26641117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid--from water clusters to interstellar ices.
    Kayi H; Kaiser RI; Head JD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4942-58. PubMed ID: 22382393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent effects on glycine. I. A supermolecule modeling of tautomerization via intramolecular proton transfer.
    Balta B; Aviyente V
    J Comput Chem; 2003 Nov; 24(14):1789-802. PubMed ID: 12964198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine dimers: structure, stability, and medium effects.
    Friant-Michel P; Ruiz-López MF
    Chemphyschem; 2010 Nov; 11(16):3499-504. PubMed ID: 20872395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral hydrolyses of carbon disulfide: An ab initio study of water catalysis.
    Deng C; Wu XP; Sun XM; Ren Y; Sheng YH
    J Comput Chem; 2009 Jan; 30(2):285-94. PubMed ID: 18613069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent effects on glycine II. Water-assisted tautomerization.
    Balta B; Aviyente V
    J Comput Chem; 2004 Apr; 25(5):690-703. PubMed ID: 14978712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism of monoethanolamine with CO₂ in aqueous solution from molecular modeling.
    Xie HB; Zhou Y; Zhang Y; Johnson JK
    J Phys Chem A; 2010 Nov; 114(43):11844-52. PubMed ID: 20939618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranyl-glycine-water complexes in solution: comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties.
    Su J; Zhang K; Schwarz WH; Li J
    Inorg Chem; 2011 Mar; 50(6):2082-93. PubMed ID: 21341733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the effect of water in the process of proton transfer of glycinamide.
    Sun Y; Li H; Liang W; Han S
    J Phys Chem B; 2005 Mar; 109(12):5919-26. PubMed ID: 16851645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-attachment resonances of glycine zwitterions from quantum scattering calculations: modeling macrosolvation effects.
    Baccarelli I; Grandi A; Gianturco FA; Lucchese RR; Sanna N
    J Phys Chem B; 2006 Dec; 110(51):26240-7. PubMed ID: 17181282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of medium effects on the structure of the glycine analogue aminomethylphosphonic acid.
    Benbrahim N; Rahmouni A; Ruiz-López MF
    Phys Chem Chem Phys; 2008 Sep; 10(36):5624-32. PubMed ID: 18956098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of ionization on the conformational preferences of peptide models. Ramachandran surfaces of N-formyl-glycine amide and N-formyl-alanine amide radical cations.
    Gil A; Sodupe M; Bertran J
    J Comput Chem; 2009 Sep; 30(12):1771-84. PubMed ID: 19090571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformations of the glycine tripeptide analog Ac-Gly-Gly-NHMe: a computational study including aqueous solvation effects.
    Atwood RE; Urban JJ
    J Phys Chem A; 2012 Feb; 116(5):1396-408. PubMed ID: 22214366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.