BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 233346)

  • 1. [DNA-protein interactions. Destabilizing activity of sheep pancreatic RNAase].
    Furia A; Carsana A; Libonati M
    Boll Soc Ital Biol Sper; 1979 Feb; 55(3):261-7. PubMed ID: 233346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of protein net charge on the nucleic acid helix-destabilizing activity of various pancreatic ribonucleases.
    Carsana A; Furia A; Libonati M
    Mol Cell Biochem; 1983; 56(1):89-92. PubMed ID: 6685223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How much is secondary structure responsible for resistance of double-stranded RNA to pancreatic ribonuclease A?
    Libonati M; Palmieri M
    Biochim Biophys Acta; 1978 Apr; 518(2):277-89. PubMed ID: 26405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA "melting" proteins. I. Effects of bovine pancreatic ribonuclease binding on the conformation and stability of DNA.
    Jensen DE; von Hippel PH
    J Biol Chem; 1976 Nov; 251(22):7198-214. PubMed ID: 993211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of homologous proteins. The refolding of different ribonucleases is independent of sequence variations, proline content and glycosylation.
    Krebs H; Schmid FX; Jaenicke R
    J Mol Biol; 1983 Sep; 169(2):619-35. PubMed ID: 6620387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of bovine pancreatic ribonuclease A with 6-chloropurine riboside 5'-monophosphate. Nuclear magnetic resonance studies of the corresponding S-peptide.
    Parés X; Puigdomènech P; Cuchillo CM
    Int J Pept Protein Res; 1980 Oct; 16(4):241-4. PubMed ID: 6257620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irreversible thermal denaturation of bovine pancreatic ribonuclease-A. Physico-chemical characterization of initial products.
    Ramnath S; Vithayathil PJ
    Int J Pept Protein Res; 1981 Jan; 17(1):107-17. PubMed ID: 6262254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleic acid-protein interactions. Degradation of double-stranded RNA by glycosylated ribonucleases.
    Carsana A; Furia A; Gallo A; Beintema JJ; Libonati M
    Biochim Biophys Acta; 1981 Jun; 654(1):77-85. PubMed ID: 7272311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of engineered human pancreatic ribonucleases, solving expression and purification problems, and enhancing thermostability.
    Canals A; Ribó M; Benito A; Bosch M; Mombelli E; Vilanova M
    Protein Expr Purif; 1999 Oct; 17(1):169-81. PubMed ID: 10497083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of unique basic residues of human pancreatic ribonuclease in its catalysis and structural stability.
    Dey P; Islam A; Ahmad F; Batra JK
    Biochem Biophys Res Commun; 2007 Sep; 360(4):809-14. PubMed ID: 17631275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of basic amino acids in the activity of a nucleic acid helix-destabilizing protein.
    Karpel RL; Merkler DJ; Flowers BK; Delahunty MD
    Biochim Biophys Acta; 1981 Jun; 654(1):42-51. PubMed ID: 6268166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helix-destabilization of deoxyribonucleic acid and poly[d(A-T).d(A-T)] by bovine seminal ribonuclease.
    Pandit MW; Ramakrishna T
    Biochim Biophys Acta; 1986 May; 867(1-2):1-8. PubMed ID: 3707965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action of A RNase and AS RNase on growth of cells in vitro.
    Cinátl J; Matousek J; Stanĕk R
    Folia Biol (Praha); 1977; 23(4):235-42. PubMed ID: 561715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insolubilized derivatives of ribonuclease and endonuclease for elimination of nucleic acids in single cell protein concentrates.
    Martinez MC; Sanchez-Montero JM; Sinisterra JV; Ballesteros A
    Biotechnol Appl Biochem; 1990 Dec; 12(6):643-52. PubMed ID: 1965485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ and Mg2+ protection against thermal denaturation of pancreatic elastase.
    Favre-Bonvin G; Bostancioglu K; Wallach JM
    Biochem Int; 1986 Dec; 13(6):983-9. PubMed ID: 3643026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Apurinic-apyrimidinic DNA-endonuclease activity of cytochrome c and pancreatic RNAse].
    Kaboev OK; Luchkina LA; Bekker ML
    Biokhimiia; 1986 Jan; 51(1):146-9. PubMed ID: 2420374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Totally synthetic crystalline ribonuclease A.
    Yajima H; Fujii N
    Biopolymers; 1981 Sep; 20(9):1859-67. PubMed ID: 6272899
    [No Abstract]   [Full Text] [Related]  

  • 20. [Antiviral activity of modified RNAses].
    Alekseeva II; Kurinenko BM; Penzikova GA; Oreshina MG
    Antibiotiki; 1982 May; 27(5):341-8. PubMed ID: 6179462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.