These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 23334753)

  • 1. Microfluidic chemostat for measuring single cell dynamics in bacteria.
    Long Z; Nugent E; Javer A; Cicuta P; Sclavi B; Cosentino Lagomarsino M; Dorfman KD
    Lab Chip; 2013 Mar; 13(5):947-54. PubMed ID: 23334753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities.
    Moffitt JR; Lee JB; Cluzel P
    Lab Chip; 2012 Apr; 12(8):1487-94. PubMed ID: 22395180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria.
    Moolman MC; Huang Z; Krishnan ST; Kerssemakers JW; Dekker NH
    J Nanobiotechnology; 2013 Apr; 11():12. PubMed ID: 23575419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic platform for profiling biomechanical properties of bacteria.
    Sun X; Weinlandt WD; Patel H; Wu M; Hernandez CJ
    Lab Chip; 2014 Jul; 14(14):2491-8. PubMed ID: 24855656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution.
    Johnson-Chavarria EM; Agrawal U; Tanyeri M; Kuhlman TE; Schroeder CM
    Lab Chip; 2014 Aug; 14(15):2688-97. PubMed ID: 24836754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput bacterial co-encapsulation in microfluidic gel beads for discovery of antibiotic-producing strains.
    Ochoa A; Gastélum G; Rocha J; Olguin LF
    Analyst; 2023 Nov; 148(22):5762-5774. PubMed ID: 37843562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array.
    Chung K; Rivet CA; Kemp ML; Lu H
    Anal Chem; 2011 Sep; 83(18):7044-52. PubMed ID: 21809821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput quantification of microbial birth and death dynamics using fluorescence microscopy.
    Hart SFM; Skelding D; Waite AJ; Burton JC; Shou W
    Quant Biol; 2019 Mar; 7(1):69-81. PubMed ID: 31598381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counteraction of antibiotic production and degradation stabilizes microbial communities.
    Kelsic ED; Zhao J; Vetsigian K; Kishony R
    Nature; 2015 May; 521(7553):516-9. PubMed ID: 25992546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial exclusion leads to "tug-of-war" ecological dynamics between competing species within microchannels.
    Rothschild J; Ma T; Milstein JN; Zilman A
    PLoS Comput Biol; 2023 Dec; 19(12):e1010868. PubMed ID: 38039342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances of integrated microfluidic suspension cell culture system.
    Kerk YJ; Jameel A; Xing XH; Zhang C
    Eng Biol; 2021 Dec; 5(4):103-119. PubMed ID: 36970555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term label-free assessments of individual bacteria using three-dimensional quantitative phase imaging and hydrogel-based immobilization.
    Shin J; Kim G; Park J; Lee M; Park Y
    Sci Rep; 2023 Jan; 13(1):46. PubMed ID: 36593327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods to monitor bacterial growth and replicative rates at the single-cell level.
    Marro FC; Laurent F; Josse J; Blocker AJ
    FEMS Microbiol Rev; 2022 Nov; 46(6):. PubMed ID: 35772001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Examination of Five Stochastic Cell-Cycle and Cell-Size Control Models for
    Le Treut G; Si F; Li D; Jun S
    Front Microbiol; 2021; 12():721899. PubMed ID: 34795646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two different cell-cycle processes determine the timing of cell division in
    Colin A; Micali G; Faure L; Cosentino Lagomarsino M; van Teeffelen S
    Elife; 2021 Oct; 10():. PubMed ID: 34612203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell growth inference of
    Messelink JJ; Meyer F; Bramkamp M; Broedersz CP
    Elife; 2021 Oct; 10():. PubMed ID: 34605403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threshold accumulation of a constitutive protein explains
    Panlilio M; Grilli J; Tallarico G; Iuliani I; Sclavi B; Cicuta P; Cosentino Lagomarsino M
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33931503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges of analysing stochastic gene expression in bacteria using single-cell time-lapse experiments.
    Hardo G; Bakshi S
    Essays Biochem; 2021 Apr; 65(1):67-79. PubMed ID: 33835126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats.
    Wright NR; Rønnest NP; Sonnenschein N
    Front Bioeng Biotechnol; 2020; 8():579841. PubMed ID: 33392163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Tunable Spatio-Temporal Patterns From a Simple Genetic Oscillator Circuit.
    Yáñez Feliú G; Vidal G; Muñoz Silva M; Rudge TJ
    Front Bioeng Biotechnol; 2020; 8():893. PubMed ID: 33014996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.