These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 23334931)
1. Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2. Bang SY; Kim JH; Lee PY; Chi SW; Cho S; Yi GS; Myung PK; Park BC; Bae KH; Park SG Folia Microbiol (Praha); 2013 Sep; 58(5):403-8. PubMed ID: 23334931 [TBL] [Abstract][Full Text] [Related]
2. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Fernandes L; Rodrigues-Pousada C; Struhl K Mol Cell Biol; 1997 Dec; 17(12):6982-93. PubMed ID: 9372930 [TBL] [Abstract][Full Text] [Related]
3. Stress-induced transcriptional activation mediated by YAP1 and YAP2 genes that encode the Jun family of transcriptional activators in Saccharomyces cerevisiae. Hirata D; Yano K; Miyakawa T Mol Gen Genet; 1994 Feb; 242(3):250-6. PubMed ID: 8107671 [TBL] [Abstract][Full Text] [Related]
4. Effects of cadmium and of YAP1 and CAD1/YAP2 genes on iron metabolism in the yeast Saccharomyces cerevisiae. Lesuisse E; Labbe P Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2937-43. PubMed ID: 8535522 [TBL] [Abstract][Full Text] [Related]
5. The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain. Azevedo D; Nascimento L; Labarre J; Toledano MB; Rodrigues-Pousada C FEBS Lett; 2007 Jan; 581(2):187-95. PubMed ID: 17187783 [TBL] [Abstract][Full Text] [Related]
6. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Stephen DW; Rivers SL; Jamieson DJ Mol Microbiol; 1995 May; 16(3):415-23. PubMed ID: 7565103 [TBL] [Abstract][Full Text] [Related]
7. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Vilela C; Linz B; Rodrigues-Pousada C; McCarthy JE Nucleic Acids Res; 1998 Mar; 26(5):1150-9. PubMed ID: 9469820 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline. Bossier P; Fernandes L; Rocha D; Rodrigues-Pousada C J Biol Chem; 1993 Nov; 268(31):23640-5. PubMed ID: 8226890 [TBL] [Abstract][Full Text] [Related]
11. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Rep M; Proft M; Remize F; Tamás M; Serrano R; Thevelein JM; Hohmann S Mol Microbiol; 2001 Jun; 40(5):1067-83. PubMed ID: 11401713 [TBL] [Abstract][Full Text] [Related]
12. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060 [TBL] [Abstract][Full Text] [Related]
13. The C-terminal region of the Hot1 transcription factor binds GGGACAAA-related sequences in the promoter of its target genes. Gomar-Alba M; Amaral C; Artacho A; D'Auria G; Pimentel C; Rodrigues-Pousada C; lí del Olmo M Biochim Biophys Acta; 2015 Dec; 1849(12):1385-97. PubMed ID: 26470684 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulatory networks in Saccharomyces cerevisiae. Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584 [TBL] [Abstract][Full Text] [Related]
15. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway. Lahav R; Gammie A; Tavazoie S; Rose MD Mol Cell Biol; 2007 Feb; 27(3):818-29. PubMed ID: 17101777 [TBL] [Abstract][Full Text] [Related]
16. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters. Sri Theivakadadcham VS; Bergey BG; Rosonina E PLoS Genet; 2019 Feb; 15(2):e1007991. PubMed ID: 30763307 [TBL] [Abstract][Full Text] [Related]
17. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins. He Y; Swaminathan A; Lopes JM Mol Microbiol; 2012 Jan; 83(2):395-407. PubMed ID: 22182244 [TBL] [Abstract][Full Text] [Related]
18. Identification of key DNA elements involved in promoter recognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris. Kranthi BV; Kumar R; Kumar NV; Rao DN; Rangarajan PN Biochim Biophys Acta; 2009; 1789(6-8):460-8. PubMed ID: 19450714 [TBL] [Abstract][Full Text] [Related]
19. Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Eriksson PR; Mendiratta G; McLaughlin NB; Wolfsberg TG; Mariño-Ramírez L; Pompa TA; Jainerin M; Landsman D; Shen CH; Clark DJ Mol Cell Biol; 2005 Oct; 25(20):9127-37. PubMed ID: 16199888 [TBL] [Abstract][Full Text] [Related]
20. Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. Chang Q; Petrash JM Biochim Biophys Acta; 2008 Feb; 1783(2):237-45. PubMed ID: 17919749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]