These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23334949)

  • 41. Highly efficient transformation of intact yeast-like conidium cells of Tremella fuciformis by electroporation.
    Guo L; Liu Y; Zhao S; Liu E; Lin J
    Sci China C Life Sci; 2008 Oct; 51(10):932-40. PubMed ID: 18815757
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis.
    Lu YP; Zhang C; Lv FX; Bie XM; Lu ZX
    Lett Appl Microbiol; 2012 Jul; 55(1):9-14. PubMed ID: 22486381
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transposome insertional mutagenesis and direct sequencing of microbial genomes.
    Hoffman LM; Jendrisak JJ; Meis RJ; Goryshin IY; Reznikof SW
    Genetica; 2000; 108(1):19-24. PubMed ID: 11145416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants.
    Shimamoto K; Miyazaki C; Hashimoto H; Izawa T; Itoh K; Terada R; Inagaki Y; Iida S
    Mol Gen Genet; 1993 Jun; 239(3):354-60. PubMed ID: 8391111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New vector system for random, single-step integration of multiple copies of DNA into the Rhodococcus genome.
    Sallam KI; Tamura N; Imoto N; Tamura T
    Appl Environ Microbiol; 2010 Apr; 76(8):2531-9. PubMed ID: 20154109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapid and high efficiency transformation of
    Wang L; Yang L; Wen X; Chen Z; Liang Q; Li J; Wang W
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30530569
    [No Abstract]   [Full Text] [Related]  

  • 47. A mini-Tn5-derived transposon with reportable and selectable markers enables rapid generation and screening of insertional mutants in Gram-negative bacteria.
    Nazareno ES; Acharya B; Dumenyo CK
    Lett Appl Microbiol; 2021 Mar; 72(3):283-291. PubMed ID: 33098689
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insertional mutagenesis by a modified in vitro Ty1 transposition system.
    Garraway LA; Tosi LR; Wang Y; Moore JB; Dobson DE; Beverley SM
    Gene; 1997 Oct; 198(1-2):27-35. PubMed ID: 9370261
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis.
    Greco R; Ouwerkerk PB; Taal AJ; Favalli C; Beguiristain T; Puigdomènech P; Colombo L; Hoge JH; Pereira A
    Plant Mol Biol; 2001 May; 46(2):215-27. PubMed ID: 11442061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generation of transposon insertion mutant libraries for Gram-positive bacteria by electroporation of phage Mu DNA transposition complexes.
    Pajunen MI; Pulliainen AT; Finne J; Savilahti H
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1209-18. PubMed ID: 15817788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein.
    Fan B; Chen XH; Budiharjo A; Bleiss W; Vater J; Borriss R
    J Biotechnol; 2011 Feb; 151(4):303-11. PubMed ID: 21237217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics.
    Sallaud C; Gay C; Larmande P; Bès M; Piffanelli P; Piégu B; Droc G; Regad F; Bourgeois E; Meynard D; Périn C; Sabau X; Ghesquière A; Glaszmann JC; Delseny M; Guiderdoni E
    Plant J; 2004 Aug; 39(3):450-64. PubMed ID: 15255873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene.
    Pinheiro LB; Gibbs MD; Vesey G; Smith JJ; Bergquist PL
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1287-95. PubMed ID: 17994234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean.
    Hancock CN; Zhang F; Floyd K; Richardson AO; Lafayette P; Tucker D; Wessler SR; Parrott WA
    Plant Physiol; 2011 Oct; 157(2):552-62. PubMed ID: 21844309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrotransformation of Bacillus mojavensis with fluorescent protein markers.
    Olubajo B; Bacon CW
    J Microbiol Methods; 2008 Aug; 74(2-3):102-5. PubMed ID: 18486251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved electroporation and cloning vector system for gram-positive bacteria.
    Dunny GM; Lee LN; LeBlanc DJ
    Appl Environ Microbiol; 1991 Apr; 57(4):1194-201. PubMed ID: 1905518
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation of Enterobacter sp. YSU auxotrophs using transposon mutagenesis.
    Caguiat JJ
    J Vis Exp; 2014 Oct; (92):e51934. PubMed ID: 25408097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tagging genes and trapping promoters in Toxoplasma gondii by insertional mutagenesis.
    Roos DS; Sullivan WJ; Striepen B; Bohne W; Donald RG
    Methods; 1997 Oct; 13(2):112-22. PubMed ID: 9405195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insertional transposon mutagenesis in the Xylella fastidiosa Citrus Variegated Chlorosis strain with transposome.
    Koide T; da Silva Neto JF; Gomes SL; Marques MV
    Curr Microbiol; 2004 Apr; 48(4):247-50. PubMed ID: 15057448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of technical conditions for the transformation of Lactobacillus acidophilus strains by electroporation.
    Kim YH; Han KS; Oh S; You S; Kim SH
    J Appl Microbiol; 2005; 99(1):167-74. PubMed ID: 15960677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.