BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23335003)

  • 1. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries.
    Weng W; Pol VG; Amine K
    Adv Mater; 2013 Mar; 25(11):1608-15. PubMed ID: 23335003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.
    Carbone L; Gobet M; Peng J; Devany M; Scrosati B; Greenbaum S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13859-65. PubMed ID: 26057152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.
    Zhang B; Xiao M; Wang S; Han D; Song S; Chen G; Meng Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13174-82. PubMed ID: 25025228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries.
    Elazari R; Salitra G; Garsuch A; Panchenko A; Aurbach D
    Adv Mater; 2011 Dec; 23(47):5641-4. PubMed ID: 22052740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-Doped Mesoporous Carbon: A Top-Down Strategy to Promote Sulfur Immobilization for Lithium-Sulfur Batteries.
    Zhao X; Liu Y; Manuel J; Chauhan GS; Ahn HJ; Kim KW; Cho KK; Ahn JH
    ChemSusChem; 2015 Oct; 8(19):3234-41. PubMed ID: 26336933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.
    Zhao C; Liu L; Zhao H; Krall A; Wen Z; Chen J; Hurley P; Jiang J; Li Y
    Nanoscale; 2014 Jan; 6(2):882-8. PubMed ID: 24270510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomineralization-induced self-assembly of porous hollow carbon nanocapsule monoliths and their application in Li-S batteries.
    Hu W; Zhang H; Zhang Y; Wang M; Qu C; Yi J
    Chem Commun (Camb); 2015 Jan; 51(6):1085-8. PubMed ID: 25446908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium-Sulfur Batteries: An Electrolysis Approach.
    He B; Li WC; Yang C; Wang SQ; Lu AH
    ACS Nano; 2016 Jan; 10(1):1633-9. PubMed ID: 26736137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable Protein-Based Binder for Lithium-Sulfur Cathodes Processed by a Solvent-Free Dry-Coating Method.
    Schmidt F; Kirchhoff S; Jägle K; De A; Ehrling S; Härtel P; Dörfler S; Abendroth T; Schumm B; Althues H; Kaskel S
    ChemSusChem; 2022 Nov; 15(22):e202201320. PubMed ID: 36169208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries.
    Chen S; Yu Z; Gordin ML; Yi R; Song J; Wang D
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6959-6966. PubMed ID: 28157286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density.
    Kang N; Lin Y; Yang L; Lu D; Xiao J; Qi Y; Cai M
    Nat Commun; 2019 Oct; 10(1):4597. PubMed ID: 31601812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient lithium-SO2 batteries with ionic liquids as electrolytes.
    Xing H; Liao C; Yang Q; Veith GM; Guo B; Sun XG; Ren Q; Hu YS; Dai S
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2099-103. PubMed ID: 24446427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
    Yoo E; Zhou H
    ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. History effects in lithium-oxygen batteries: how initial seeding influences the discharge capacity.
    Rinaldi A; Wijaya O; Hoster HE; Yu DY
    ChemSusChem; 2014 May; 7(5):1283-8. PubMed ID: 24591297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.