BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23335063)

  • 1. Animal model for mammary tumor growth in the bone microenvironment.
    Futakuchi M; Singh RK
    Breast Cancer; 2013 Jul; 20(3):195-203. PubMed ID: 23335063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animal models of bone metastasis.
    Rosol TJ; Tannehill-Gregg SH; LeRoy BE; Mandl S; Contag CH
    Cancer; 2003 Feb; 97(3 Suppl):748-57. PubMed ID: 12548572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RANKL inhibition combined with tamoxifen treatment increases anti-tumor efficacy and prevents tumor-induced bone destruction in an estrogen receptor-positive breast cancer bone metastasis model.
    Canon J; Bryant R; Roudier M; Branstetter DG; Dougall WC
    Breast Cancer Res Treat; 2012 Oct; 135(3):771-80. PubMed ID: 22926264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breast cancer-derived factors facilitate osteolytic bone metastasis.
    Rose AA; Siegel PM
    Bull Cancer; 2006 Sep; 93(9):931-43. PubMed ID: 16980236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of prospective factors promoting osteotropism in breast cancer: a potential role for CITED2.
    Lau WM; Weber KL; Doucet M; Chou YT; Brady K; Kowalski J; Tsai HL; Yang J; Kominsky SL
    Int J Cancer; 2010 Feb; 126(4):876-84. PubMed ID: 19642106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line.
    Price JT; Quinn JM; Sims NA; Vieusseux J; Waldeck K; Docherty SE; Myers D; Nakamura A; Waltham MC; Gillespie MT; Thompson EW
    Cancer Res; 2005 Jun; 65(11):4929-38. PubMed ID: 15930315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of osteoblastic metastases: role of endothelin-1.
    Mohammad KS; Guise TA
    Clin Orthop Relat Res; 2003 Oct; (415 Suppl):S67-74. PubMed ID: 14600594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand.
    Wilson TJ; Nannuru KC; Futakuchi M; Sadanandam A; Singh RK
    Cancer Res; 2008 Jul; 68(14):5803-11. PubMed ID: 18632634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of tumor-bone interactions in osteolytic metastases.
    Chirgwin JM; Guise TA
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):159-78. PubMed ID: 11186331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of bisphosphonates for the treatment of bone metastasis in experimental animal models.
    Yoneda T; Michigami T; Yi B; Williams PJ; Niewolna M; Hiraga T
    Cancer Treat Rev; 1999 Oct; 25(5):293-9. PubMed ID: 10544073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of parathyroid hormone-related protein causes hypercalcemia but not bone metastases in a murine model of mammary tumorigenesis.
    Wysolmerski JJ; Dann PR; Zelazny E; Dunbar ME; Insogna KL; Guise TA; Perkins AS
    J Bone Miner Res; 2002 Jul; 17(7):1164-70. PubMed ID: 12096830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer.
    Futakuchi M; Fukamachi K; Suzui M
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt B):206-211. PubMed ID: 26656603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapamycin inhibits osteolysis and improves survival in a model of experimental bone metastases.
    Hussein O; Tiedemann K; Murshed M; Komarova SV
    Cancer Lett; 2012 Jan; 314(2):176-84. PubMed ID: 22014409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Methoxyestradiol suppresses osteolytic breast cancer tumor progression in vivo.
    Cicek M; Iwaniec UT; Goblirsch MJ; Vrabel A; Ruan M; Clohisy DR; Turner RR; Oursler MJ
    Cancer Res; 2007 Nov; 67(21):10106-11. PubMed ID: 17974950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinically relevant metastatic breast cancer models to study chemosensitivity.
    Kim LS; Price JE
    Methods Mol Med; 2005; 111():285-95. PubMed ID: 15911986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro.
    Yoneda T; Williams PJ; Hiraga T; Niewolna M; Nishimura R
    J Bone Miner Res; 2001 Aug; 16(8):1486-95. PubMed ID: 11499871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblasts suppress high bone turnover caused by osteolytic breast cancer in-vitro.
    Krawetz R; Wu YE; Rancourt DE; Matyas J
    Exp Cell Res; 2009 Aug; 315(14):2333-42. PubMed ID: 19433087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model.
    Moreau JE; Anderson K; Mauney JR; Nguyen T; Kaplan DL; Rosenblatt M
    Cancer Res; 2007 Nov; 67(21):10304-8. PubMed ID: 17974972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model.
    Mbalaviele G; Dunstan CR; Sasaki A; Williams PJ; Mundy GR; Yoneda T
    Cancer Res; 1996 Sep; 56(17):4063-70. PubMed ID: 8752180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of osteolytic bone metastases in breast carcinoma.
    Käkönen SM; Mundy GR
    Cancer; 2003 Feb; 97(3 Suppl):834-9. PubMed ID: 12548583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.