These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23335248)

  • 1. Monte Carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities.
    Coe JP; Taylor DJ; Paterson MJ
    J Comput Chem; 2013 May; 34(13):1083-93. PubMed ID: 23335248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-averaged Monte Carlo configuration interaction applied to electronically excited states.
    Coe JP; Paterson MJ
    J Chem Phys; 2013 Oct; 139(15):154103. PubMed ID: 24160496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Monte Carlo configuration interaction: natural orbitals and second-order perturbation theory.
    Coe JP; Paterson MJ
    J Chem Phys; 2012 Nov; 137(20):204108. PubMed ID: 23205982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations of potential energy surfaces using Monte Carlo configuration interaction.
    Coe JP; Taylor DJ; Paterson MJ
    J Chem Phys; 2012 Nov; 137(19):194111. PubMed ID: 23181298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo.
    Cleland DM; Booth GH; Alavi A
    J Chem Phys; 2011 Jan; 134(2):024112. PubMed ID: 21241085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic construction of configuration interaction wavefunctions in the complete CI space.
    Prentice AW; Coe JP; Paterson MJ
    J Chem Phys; 2019 Oct; 151(16):164112. PubMed ID: 31675885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited states from quantum Monte Carlo in the basis of Slater determinants.
    Humeniuk A; Mitrić R
    J Chem Phys; 2014 Nov; 141(19):194104. PubMed ID: 25416871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo configuration interaction with perturbation corrections for dissociation energies of first row diatomic molecules: C2, N2, O2, CO, and NO.
    Kelly TP; Perera A; Bartlett RJ; Greer JC
    J Chem Phys; 2014 Feb; 140(8):084114. PubMed ID: 24588155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density matrices in full configuration interaction quantum Monte Carlo: Excited states, transition dipole moments, and parallel distribution.
    Blunt NS; Booth GH; Alavi A
    J Chem Phys; 2017 Jun; 146(24):244105. PubMed ID: 28668027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate nonrelativistic ground-state energies of 3d transition metal atoms.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Chem Phys; 2014 Dec; 141(24):244110. PubMed ID: 25554136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic dipole moments calculated using analytical molecular second-moment gradients.
    Solheim H; Ruud K; Astrand PO
    J Chem Phys; 2004 Jun; 120(22):10368-78. PubMed ID: 15268064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaching exact hyperpolarizabilities via sum-over-states Monte Carlo configuration interaction.
    Coe JP; Paterson MJ
    J Chem Phys; 2014 Sep; 141(12):124118. PubMed ID: 25273423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multireference configuration interaction studies on the ground and excited states of N2O2: the potential energy curves of N2O2 along N-N distance.
    Li Y; Vo CK
    J Chem Phys; 2006 Sep; 125(9):094303. PubMed ID: 16965076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deterministic Projector Configuration Interaction Approach for the Ground State of Quantum Many-Body Systems.
    Zhang T; Evangelista FA
    J Chem Theory Comput; 2016 Sep; 12(9):4326-37. PubMed ID: 27464301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: comparison of the methods of Helgaker et al. and Feller.
    Tsuzuki S; Honda K; Uchimaru T; Mikami M
    J Chem Phys; 2006 Mar; 124(11):114304. PubMed ID: 16555885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational formulation of perturbative explicitly-correlated coupled-cluster methods.
    Torheyden M; Valeev EF
    Phys Chem Chem Phys; 2008 Jun; 10(23):3410-20. PubMed ID: 18535724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of dipole, quadrupole, and octupole surfaces from the variational two-electron reduced density matrix method.
    Gidofalvi G; Mazziotti DA
    J Chem Phys; 2006 Oct; 125(14):144102. PubMed ID: 17042574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the accuracy of computed excited-state dipole moments.
    King RA
    J Phys Chem A; 2008 Jun; 112(25):5727-33. PubMed ID: 18517183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular properties from variational reduced-density-matrix theory with three-particle N-representability conditions.
    Gidofalvi G; Mazziotti DA
    J Chem Phys; 2007 Jan; 126(2):024105. PubMed ID: 17228941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.