These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23335420)

  • 1. Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis.
    Costa KC; Yoon SH; Pan M; Burn JA; Baliga NS; Leigh JA
    J Bacteriol; 2013 Apr; 195(7):1456-62. PubMed ID: 23335420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecies Formate Exchange Drives Syntrophic Growth of
    Day LA; Kelsey EL; Fonseca DR; Costa KC
    Appl Environ Microbiol; 2022 Dec; 88(23):e0115922. PubMed ID: 36374033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis.
    Costa KC; Lie TJ; Jacobs MA; Leigh JA
    mBio; 2013 Feb; 4(2):. PubMed ID: 23443005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of coenzyme F420-reducing hydrogenases and hydrogen- and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis.
    Hendrickson EL; Leigh JA
    J Bacteriol; 2008 Jul; 190(14):4818-21. PubMed ID: 18487331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.
    Lupa B; Hendrickson EL; Leigh JA; Whitman WB
    Appl Environ Microbiol; 2008 Nov; 74(21):6584-90. PubMed ID: 18791018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis.
    Sattler C; Wolf S; Fersch J; Goetz S; Rother M
    Mol Genet Genomics; 2013 Sep; 288(9):413-24. PubMed ID: 23801407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Flexible System for Cultivation of
    Long F; Wang L; Lupa B; Whitman WB
    Archaea; 2017; 2017():7046026. PubMed ID: 29348732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
    Costa KC; Wong PM; Wang T; Lie TJ; Dodsworth JA; Swanson I; Burn JA; Hackett M; Leigh JA
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11050-5. PubMed ID: 20534465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis.
    Wood GE; Haydock AK; Leigh JA
    J Bacteriol; 2003 Apr; 185(8):2548-54. PubMed ID: 12670979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth rate-dependent coordination of catabolism and anabolism in the archaeon Methanococcus maripaludis under phosphate limitation.
    Gu W; Müller AL; Deutzmann JS; Williamson JR; Spormann AM
    ISME J; 2022 Oct; 16(10):2313-2319. PubMed ID: 35780255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus.
    Belay N; Sparling R; Daniels L
    Appl Environ Microbiol; 1986 Nov; 52(5):1080-5. PubMed ID: 3098165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.
    Costa KC; Lie TJ; Xia Q; Leigh JA
    J Bacteriol; 2013 Nov; 195(22):5160-5. PubMed ID: 24039260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis.
    Xia Q; Wang T; Hendrickson EL; Lie TJ; Hackett M; Leigh JA
    BMC Microbiol; 2009 Jul; 9():149. PubMed ID: 19627604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of genetic approaches for the methane-producing archaebacterium Methanococcus maripaludis.
    Whitman WB; Tumbula DL; Yu JP; Kim W
    Biofactors; 1997; 6(1):37-46. PubMed ID: 9233538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea.
    Hendrickson EL; Haydock AK; Moore BC; Whitman WB; Leigh JA
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8930-4. PubMed ID: 17502615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative resource allocation strategy in the chemolithoautotrophic archaeon
    Müller AL; Gu W; Patsalo V; Deutzmann JS; Williamson JR; Spormann AM
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33879571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen.
    Yoon SH; Turkarslan S; Reiss DJ; Pan M; Burn JA; Costa KC; Lie TJ; Slagel J; Moritz RL; Hackett M; Leigh JA; Baliga NS
    Genome Res; 2013 Nov; 23(11):1839-51. PubMed ID: 24089473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux measurements and maintenance energy for carbon dioxide utilization by Methanococcus maripaludis.
    Goyal N; Padhiary M; Karimi IA; Zhou Z
    Microb Cell Fact; 2015 Sep; 14():146. PubMed ID: 26376868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane.
    Goyal N; Widiastuti H; Karimi IA; Zhou Z
    Mol Biosyst; 2014 May; 10(5):1043-54. PubMed ID: 24553424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.
    Richards MA; Lie TJ; Zhang J; Ragsdale SW; Leigh JA; Price ND
    J Bacteriol; 2016 Dec; 198(24):3379-3390. PubMed ID: 27736793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.