These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23335673)
41. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
42. Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate cancer cells. Enmon RM; O'Connor KC; Lacks DJ; Schwartz DK; Dotson RS Biotechnol Bioeng; 2001 Mar; 72(6):579-91. PubMed ID: 11460249 [TBL] [Abstract][Full Text] [Related]
43. Hydrogel microenvironments for cancer spheroid growth and drug screening. Li Y; Kumacheva E Sci Adv; 2018 Apr; 4(4):eaas8998. PubMed ID: 29719868 [TBL] [Abstract][Full Text] [Related]
44. Differential regulation of cyclin-dependent kinase inhibitors in monolayer and spheroid cultures of tumorigenic and nontumorigenic fibroblasts. LaRue KE; Bradbury EM; Freyer JP Cancer Res; 1998 Mar; 58(6):1305-14. PubMed ID: 9515820 [TBL] [Abstract][Full Text] [Related]
45. A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. Friedrich J; Eder W; Castaneda J; Doss M; Huber E; Ebner R; Kunz-Schughart LA J Biomol Screen; 2007 Oct; 12(7):925-37. PubMed ID: 17942785 [TBL] [Abstract][Full Text] [Related]
47. Impedance sensor technology for cell-based assays in the framework of a high-content screening system. Schwarzenberger T; Wolf P; Brischwein M; Kleinhans R; Demmel F; Lechner A; Becker B; Wolf B Physiol Meas; 2011 Jul; 32(7):977-93. PubMed ID: 21646704 [TBL] [Abstract][Full Text] [Related]
48. Electrochemical impedance spectroscopy. Chang BY; Park SM Annu Rev Anal Chem (Palo Alto Calif); 2010; 3():207-29. PubMed ID: 20636040 [TBL] [Abstract][Full Text] [Related]
49. Effect of CD147 monoclonal antibody on paclitaxel resistance in HCE1 multicellular spheroids. Hu Y; Wu Y Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2011 Mar; 36(3):192-202. PubMed ID: 21464539 [TBL] [Abstract][Full Text] [Related]
50. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Yoshii Y; Waki A; Yoshida K; Kakezuka A; Kobayashi M; Namiki H; Kuroda Y; Kiyono Y; Yoshii H; Furukawa T; Asai T; Okazawa H; Gelovani JG; Fujibayashi Y Biomaterials; 2011 Sep; 32(26):6052-8. PubMed ID: 21640378 [TBL] [Abstract][Full Text] [Related]
51. Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Zietarska M; Maugard CM; Filali-Mouhim A; Alam-Fahmy M; Tonin PN; Provencher DM; Mes-Masson AM Mol Carcinog; 2007 Oct; 46(10):872-85. PubMed ID: 17455221 [TBL] [Abstract][Full Text] [Related]
52. Real-time detection of β1 integrin expression on MG-63 cells using electrochemical impedance spectroscopy. Lin CY; Teng NC; Hsieh SC; Lin YS; Chang WJ; Hsiao SY; Huang HS; Huang HM Biosens Bioelectron; 2011 Oct; 28(1):221-6. PubMed ID: 21816605 [TBL] [Abstract][Full Text] [Related]
53. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Ong SM; Zhao Z; Arooz T; Zhao D; Zhang S; Du T; Wasser M; van Noort D; Yu H Biomaterials; 2010 Feb; 31(6):1180-90. PubMed ID: 19889455 [TBL] [Abstract][Full Text] [Related]
54. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Ernst A; Hofmann S; Ahmadi R; Becker N; Korshunov A; Engel F; Hartmann C; Felsberg J; Sabel M; Peterziel H; Durchdewald M; Hess J; Barbus S; Campos B; Starzinski-Powitz A; Unterberg A; Reifenberger G; Lichter P; Herold-Mende C; Radlwimmer B Clin Cancer Res; 2009 Nov; 15(21):6541-50. PubMed ID: 19861460 [TBL] [Abstract][Full Text] [Related]
55. A new measuring and identification approach for time-varying bioimpedance using multisine electrical impedance spectroscopy. Sanchez B; Louarroudi E; Jorge E; Cinca J; Bragos R; Pintelon R Physiol Meas; 2013 Mar; 34(3):339-57. PubMed ID: 23442821 [TBL] [Abstract][Full Text] [Related]
56. Vitamin D, tamoxifen and beta-estradiol modulate breast cancer cell growth and interleukin-6 and metalloproteinase-2 production in three-dimensional co-cultures of tumor cell spheroids with endothelium. Paduch R; Kandefer-Szerszeń M Cell Biol Toxicol; 2005; 21(5-6):247-56. PubMed ID: 16323060 [TBL] [Abstract][Full Text] [Related]
57. Comparison of extracellular matrix in human osteosarcomas and melanomas growing as xenografts, multicellular spheroids, and monolayer cultures. Davies CD; Müller H; Hagen I; Gårseth M; Hjelstuen MH Anticancer Res; 1997; 17(6D):4317-26. PubMed ID: 9494527 [TBL] [Abstract][Full Text] [Related]
58. Enhancement of drug efflux activity via MDR1 protein by spheroid culture of human hepatic cancer cells. Oshikata A; Matsushita T; Ueoka R J Biosci Bioeng; 2011 May; 111(5):590-3. PubMed ID: 21354366 [TBL] [Abstract][Full Text] [Related]
59. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. De Witt Hamer PC; Van Tilborg AA; Eijk PP; Sminia P; Troost D; Van Noorden CJ; Ylstra B; Leenstra S Oncogene; 2008 Mar; 27(14):2091-6. PubMed ID: 17934519 [TBL] [Abstract][Full Text] [Related]
60. Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. Hildebrandt C; Büth H; Cho S; Impidjati ; Thielecke H J Biotechnol; 2010 Jul; 148(1):83-90. PubMed ID: 20085793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]