BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 23335859)

  • 1. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos.
    Range RC; Angerer RC; Angerer LM
    PLoS Biol; 2013; 11(1):e1001467. PubMed ID: 23335859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos.
    Range RC
    Dev Biol; 2018 Dec; 444(2):83-92. PubMed ID: 30332609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.
    Range RC; Wei Z
    Development; 2016 May; 143(9):1523-33. PubMed ID: 26952978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel gene's role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos.
    Khadka A; Martínez-Bartolomé M; Burr SD; Range RC
    Evodevo; 2018; 9():1. PubMed ID: 29387332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specification and positioning of the anterior neuroectoderm in deuterostome embryos.
    Range R
    Genesis; 2014 Mar; 52(3):222-34. PubMed ID: 24549984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo.
    Martínez-Bartolomé M; Range RC
    Development; 2019 Dec; 146(24):. PubMed ID: 31822478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
    Wei Z; Yaguchi J; Yaguchi S; Angerer RC; Angerer LM
    Development; 2009 Apr; 136(7):1179-89. PubMed ID: 19270175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An early global role for Axin is required for correct patterning of the anterior-posterior axis in the sea urchin embryo.
    Sun H; Peng CJ; Wang L; Feng H; Wikramanayake AH
    Development; 2021 Mar; 148(7):. PubMed ID: 33688076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterior-posterior Wnt signaling network conservation between indirect developing sea urchin and hemichordate embryos.
    Fenner JL; Newberry C; Todd C; Range RC
    Integr Comp Biol; 2024 May; ():. PubMed ID: 38769605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm.
    Yaguchi J; Takeda N; Inaba K; Yaguchi S
    PLoS Genet; 2016 Apr; 12(4):e1006001. PubMed ID: 27101101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning.
    Weidinger G; Thorpe CJ; Wuennenberg-Stapleton K; Ngai J; Moon RT
    Curr Biol; 2005 Mar; 15(6):489-500. PubMed ID: 15797017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos.
    Gautam S; Fenner JL; Wang B; Range RC
    iScience; 2024 Jan; 27(1):108616. PubMed ID: 38179064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meis transcription factor maintains the neurogenic ectoderm and regulates the anterior-posterior patterning in embryos of a sea urchin, Hemicentrotus pulcherrimus.
    Yaguchi J; Yamazaki A; Yaguchi S
    Dev Biol; 2018 Dec; 444(1):1-8. PubMed ID: 30266259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling.
    Wei Z; Range R; Angerer R; Angerer L
    Development; 2012 May; 139(9):1662-9. PubMed ID: 22438568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor Tyrosine Kinases ror1/2 and ryk Are Co-expressed with Multiple Wnt Signaling Components During Early Development of Sea Urchin Embryos.
    Ka C; Gautam S; Marshall SR; Tice LP; Martinez-Bartolome M; Fenner JL; Range RC
    Biol Bull; 2021 Oct; 241(2):140-157. PubMed ID: 34706206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway.
    Takai A; Inomata H; Arakawa A; Yakura R; Matsuo-Takasaki M; Sasai Y
    Development; 2010 Oct; 137(19):3293-302. PubMed ID: 20823067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate Specification of Neural Plate Border by Canonical Wnt Signaling and Grhl3 is Crucial for Neural Tube Closure.
    Kimura-Yoshida C; Mochida K; Ellwanger K; Niehrs C; Matsuo I
    EBioMedicine; 2015 Jun; 2(6):513-27. PubMed ID: 26288816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.