These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23335951)

  • 21. Ambiguous splice sites distinguish circRNA and linear splicing in the human genome.
    Dehghannasiri R; Szabo L; Salzman J
    Bioinformatics; 2019 Apr; 35(8):1263-1268. PubMed ID: 30192918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SpliceCenter: a suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies.
    Ryan MC; Zeeberg BR; Caplen NJ; Cleland JA; Kahn AB; Liu H; Weinstein JN
    BMC Bioinformatics; 2008 Jul; 9():313. PubMed ID: 18638396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MADS+: discovery of differential splicing events from Affymetrix exon junction array data.
    Shen S; Warzecha CC; Carstens RP; Xing Y
    Bioinformatics; 2010 Jan; 26(2):268-9. PubMed ID: 19933160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
    Shkreta L; Bell B; Revil T; Venables JP; Prinos P; Elela SA; Chabot B
    Cancer Treat Res; 2013; 158():41-94. PubMed ID: 24222354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts.
    Sorber K; Dimon MT; DeRisi JL
    Nucleic Acids Res; 2011 May; 39(9):3820-35. PubMed ID: 21245033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HMMSplicer: a tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data.
    Dimon MT; Sorber K; DeRisi JL
    PLoS One; 2010 Nov; 5(11):e13875. PubMed ID: 21079731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of alternatively spliced transcripts in leukemia cell lines by minisequencing on microarrays.
    Milani L; Fredriksson M; Syvänen AC
    Clin Chem; 2006 Feb; 52(2):202-11. PubMed ID: 16384885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting mutually exclusive spliced exons based on exon length, splice site and reading frame conservation, and exon sequence homology.
    Pillmann H; Hatje K; Odronitz F; Hammesfahr B; Kollmar M
    BMC Bioinformatics; 2011 Jun; 12():270. PubMed ID: 21718515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extent and diversity of human alternative splicing established by complementary database annotation and microarray analysis.
    Bingham JL; Carrigan PE; Miller LJ; Srinivasan S
    OMICS; 2008 Mar; 12(1):83-92. PubMed ID: 18266558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FDM: a graph-based statistical method to detect differential transcription using RNA-seq data.
    Singh D; Orellana CF; Hu Y; Jones CD; Liu Y; Chiang DY; Liu J; Prins JF
    Bioinformatics; 2011 Oct; 27(19):2633-40. PubMed ID: 21824971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative RNA-seq meta-analysis of alternative exon usage in
    Tourasse NJ; Millet JRM; Dupuy D
    Genome Res; 2017 Dec; 27(12):2120-2128. PubMed ID: 29089372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microarray configuration to quantify expression levels and relative abundance of splice variants.
    Fehlbaum P; Guihal C; Bracco L; Cochet O
    Nucleic Acids Res; 2005 Mar; 33(5):e47. PubMed ID: 15760843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression Changes Confirm Genomic Variants Predicted to Result in Allele-Specific, Alternative mRNA Splicing.
    Mucaki EJ; Shirley BC; Rogan PK
    Front Genet; 2020; 11():109. PubMed ID: 32211018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying splice-site usage: a simple yet powerful approach to analyze splicing.
    Dent CI; Singh S; Mukherjee S; Mishra S; Sarwade RD; Shamaya N; Loo KP; Harrison P; Sureshkumar S; Powell D; Balasubramanian S
    NAR Genom Bioinform; 2021 Jun; 3(2):lqab041. PubMed ID: 34017946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhalation of ZnO Nanoparticles: Splice Junction Expression and Alternative Splicing in Mice.
    Rossner P; Vrbova K; Strapacova S; Rossnerova A; Ambroz A; Brzicova T; Libalova H; Javorkova E; Kulich P; Vecera Z; Mikuska P; Coufalik P; Krumal K; Capka L; Docekal B; Moravec P; Sery O; Misek I; Fictum P; Fiser K; Machala M; Topinka J
    Toxicol Sci; 2019 Mar; 168(1):190-200. PubMed ID: 30500950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. McSplicer: a probabilistic model for estimating splice site usage from RNA-seq data.
    Alqassem I; Sonthalia Y; Klitzke-Feser E; Shim H; Canzar S
    Bioinformatics; 2021 Aug; 37(14):2004–2011. PubMed ID: 33515239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data.
    Zhang Y; Lameijer EW; 't Hoen PA; Ning Z; Slagboom PE; Ye K
    Bioinformatics; 2012 Feb; 28(4):479-86. PubMed ID: 22219203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A statistical method for the detection of alternative splicing using RNA-seq.
    Wang L; Xi Y; Yu J; Dong L; Yen L; Li W
    PLoS One; 2010 Jan; 5(1):e8529. PubMed ID: 20072613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using RNA-Seq to Discover Genetic Polymorphisms That Produce Hidden Splice Variants.
    Stein S; Bahrami-Samani E; Xing Y
    Methods Mol Biol; 2017; 1648():129-142. PubMed ID: 28766294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observations on novel splice junctions from RNA sequencing data.
    Wang L; Wang X; Wang X; Liang Y; Zhang X
    Biochem Biophys Res Commun; 2011 Jun; 409(2):299-303. PubMed ID: 21575597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.