These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23335991)

  • 1. Impact of robotic assistance on precision of vitreoretinal surgical procedures.
    Noda Y; Ida Y; Tanaka S; Toyama T; Roggia MF; Tamaki Y; Sugita N; Mitsuishi M; Ueta T
    PLoS One; 2013; 8(1):e54116. PubMed ID: 23335991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsurgical robotic system for vitreoretinal surgery.
    Ida Y; Sugita N; Ueta T; Tamaki Y; Tanimoto K; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2012 Jan; 7(1):27-34. PubMed ID: 21573828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model.
    Ueta T; Yamaguchi Y; Shirakawa Y; Nakano T; Ideta R; Noda Y; Morita A; Mochizuki R; Sugita N; Mitsuishi M; Tamaki Y
    Ophthalmology; 2009 Aug; 116(8):1538-43, 1543.e1-2. PubMed ID: 19545902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human/robotic interaction: vision limits performance in simulated vitreoretinal surgery.
    de Smet MD; de Jonge N; Iannetta D; Faridpooya K; van Oosterhout E; Naus G; Meenink TCM; Mura M; Beelen MJ
    Acta Ophthalmol; 2019 Nov; 97(7):672-678. PubMed ID: 30588753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active tremor cancellation by a "smart" handheld vitreoretinal microsurgical tool using swept source optical coherence tomography.
    Song C; Gehlbach PL; Kang JU
    Opt Express; 2012 Oct; 20(21):23414-21. PubMed ID: 23188305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic Vitreoretinal Surgery.
    Channa R; Iordachita I; Handa JT
    Retina; 2017 Jul; 37(7):1220-1228. PubMed ID: 27893625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous Positioning of Eye Surgical Robot Using the Tool Shadow and Kalman Filtering.
    Tayama T; Kurose Y; Marinho MM; Koyama Y; Harada K; Omata S; Arai F; Sugimoto K; Araki F; Totsuka K; Takao M; Aihara M; Mitsuishi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1723-1726. PubMed ID: 30440727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parallel robot to assist vitreoretinal surgery.
    Nakano T; Sugita N; Ueta T; Tamaki Y; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2009 Nov; 4(6):517-26. PubMed ID: 20033328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Robotic and OCT-Aided Systems for Vitreoretinal Surgery.
    Ahronovich EZ; Simaan N; Joos KM
    Adv Ther; 2021 May; 38(5):2114-2129. PubMed ID: 33813718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation.
    Nawabi DH; Conditt MA; Ranawat AS; Dunbar NJ; Jones J; Banks S; Padgett DE
    Proc Inst Mech Eng H; 2013 Mar; 227(3):302-9. PubMed ID: 23662346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RESOLUTION, DEPTH OF FIELD, AND PHYSICIAN SATISFACTION DURING DIGITALLY ASSISTED VITREORETINAL SURGERY.
    Freeman WR; Chen KC; Ho J; Chao DL; Ferreyra HA; Tripathi AB; Nudleman E; Bartsch DU
    Retina; 2019 Sep; 39(9):1768-1771. PubMed ID: 29965938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of optical coherence tomography using active handheld micromanipulator in vitreoretinal surgery.
    Yang S; Balicki M; Wells TS; Maclachlan RA; Liu X; Kang JU; Handa JT; Taylor RH; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5674-7. PubMed ID: 24111025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental and clinical study on the initial experiences of Brazilian vitreoretinal surgeons with heads-up surgery.
    Palácios RM; de Carvalho ACM; Maia M; Caiado RR; Camilo DAG; Farah ME
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):473-483. PubMed ID: 30645695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotics and ophthalmology: Are we there yet?
    Pandey SK; Sharma V
    Indian J Ophthalmol; 2019 Jul; 67(7):988-994. PubMed ID: 31238393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and evaluation of a slave manipulator with roll-pitch-roll wrist and automatic tool loading mechanism in telerobotic surgery.
    Kim KY; Lee JJ
    Int J Med Robot; 2012 Dec; 8(4):421-35. PubMed ID: 23081717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature classification for tracking articulated surgical tools.
    Reiter A; Allen PK; Zhao T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):592-600. PubMed ID: 23286097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery.
    Gonenc B; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5686-9. PubMed ID: 24111028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assistance to bone milling: a tool mounted visual display improves the efficiency of robotic guidance.
    Francoise V; Sahbani A; Roby-Brami A; Morel G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6252-6. PubMed ID: 24111169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraoperative optical coherence tomography-compatible surgical instruments for real-time image-guided ophthalmic surgery.
    Ehlers JP; Uchida A; Srivastava SK
    Br J Ophthalmol; 2017 Oct; 101(10):1306-1308. PubMed ID: 28729372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collision detection and untangling for surgical robotic manipulators.
    Morvan T; Martinsen M; Reimers M; Samset E; Elle OJ
    Int J Med Robot; 2009 Sep; 5(3):233-42. PubMed ID: 19367614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.