These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23336016)

  • 1. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.
    Kawano T; Bouteau F; Mancuso S
    Commun Integr Biol; 2012 Nov; 5(6):519-26. PubMed ID: 23336016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata. From Finite Automata to Turing Machines.
    Dueñas-Díez M; Pérez-Mercader J
    iScience; 2019 Sep; 19():514-526. PubMed ID: 31442667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized rough and fuzzy rough automata for semantic computing.
    Yadav S; Tiwari SP; Kumari M; Yadav VK
    Int J Mach Learn Cybern; 2022; 13(12):4013-4032. PubMed ID: 36164557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a specific limitation on local-feedback recurrent networks acting as Mealy-Moore machines.
    Kremer SC
    IEEE Trans Neural Netw; 1999; 10(2):433-8. PubMed ID: 18252541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imitation in automata and robots: A philosophical case study on Kempelen.
    Geiszler L
    Stud Hist Philos Sci; 2023 Aug; 100():22-31. PubMed ID: 37311261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroactive polymer gels as probabilistic reservoir automata for computation.
    Strong V; Holderbaum W; Hayashi Y
    iScience; 2022 Dec; 25(12):105558. PubMed ID: 36465106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions.
    Nehaniv CL; Rhodes J; Egri-Nagy A; Dini P; Morris ER; Horváth G; Karimi F; Schreckling D; Schilstra MJ
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2046):. PubMed ID: 26078349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Native Chemical Computation. A Generic Application of Oscillating Chemistry Illustrated With the Belousov-Zhabotinsky Reaction. A Review.
    Dueñas-Díez M; Pérez-Mercader J
    Front Chem; 2021; 9():611120. PubMed ID: 34046394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov-Zhabotinsky reaction.
    Dini P; Nehaniv CL; Egri-Nagy A; Schilstra MJ
    Biosystems; 2013 May; 112(2):145-62. PubMed ID: 23499885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Framework for engineering finite state machines in gene regulatory networks.
    Oishi K; Klavins E
    ACS Synth Biol; 2014 Sep; 3(9):652-65. PubMed ID: 24932713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust finite automata in stochastic chemical reaction networks.
    Arredondo D; Lakin MR
    R Soc Open Sci; 2021 Dec; 8(12):211310. PubMed ID: 34950493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational properties of self-reproducing growing automata.
    Sosic R; Johnson RR
    Biosystems; 1995; 36(1):7-17. PubMed ID: 8527697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rule-based modelling and simulation of biochemical systems with molecular finite automata.
    Yang J; Meng X; Hlavacek WS
    IET Syst Biol; 2010 Nov; 4(6):453-66. PubMed ID: 21073243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ansatz for Computational Undecidability in RNA Automata.
    Svahn AJ; Prokopenko M
    Artif Life; 2023 May; 29(2):261-288. PubMed ID: 35929772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential dependence on DNA ligase of type II restriction enzymes: a practical way toward ligase-free DNA automaton.
    Chen P; Li J; Zhao J; He L; Zhang Z
    Biochem Biophys Res Commun; 2007 Feb; 353(3):733-7. PubMed ID: 17196173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting the features of the finite state automata for biomolecular computing.
    Martínez-Pérez IM; Ignatova Z; Zimmermann KH
    Recent Pat DNA Gene Seq; 2009; 3(2):130-8. PubMed ID: 19519583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifiable automata self-modifying automata.
    Moulin JP
    Acta Biotheor; 1992 Sep; 40(2-3):195-204. PubMed ID: 1462736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QM Automata: A New Class of Restricted Quantum Membrane Automata.
    Giannakis K; Singh A; Kastampolidou K; Papalitsas C; Andronikos T
    Adv Exp Med Biol; 2017; 988():193-204. PubMed ID: 28971399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward integration of in vivo molecular computing devices: successes and challenges.
    Hayat S; Hinze T
    HFSP J; 2008 Oct; 2(5):239-43. PubMed ID: 19404433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free Choice in Quantum Theory: A
    Anashin V
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.