These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23336139)

  • 1. Facile fabrication of robust superhydrophobic epoxy film with polyamine dispersed carbon nanotubes.
    Hsu CP; Chang LY; Chiu CW; Lee PT; Lin JJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):538-45. PubMed ID: 23336139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes.
    Wang JL; Ren KF; Chang H; Zhang SM; Jin LJ; Ji J
    Phys Chem Chem Phys; 2014 Feb; 16(7):2936-43. PubMed ID: 24424685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film.
    Huang L; Lau SP; Yang HY; Leong ES; Yu SF; Prawer S
    J Phys Chem B; 2005 Apr; 109(16):7746-8. PubMed ID: 16851899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film.
    Lin Z; Liu Y; Wong CP
    Langmuir; 2010 Oct; 26(20):16110-4. PubMed ID: 20857962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First fabrication of electrowetting display by using pigment-in-oil driving pixels.
    Lee PT; Chiu CW; Lee TM; Chang TY; Wu MT; Cheng WY; Kuo SW; Lin JJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5914-20. PubMed ID: 23796039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids.
    Hameed N; Salim NV; Hanley TL; Sona M; Fox BL; Guo Q
    Phys Chem Chem Phys; 2013 Jul; 15(28):11696-703. PubMed ID: 23752343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films.
    Meng LY; Park SJ
    J Colloid Interface Sci; 2010 Feb; 342(2):559-63. PubMed ID: 19919860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.
    Liu Y; Lin Z; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3959-64. PubMed ID: 22764733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic surfaces formed using layer-by-layer self-assembly with aminated multiwall carbon nanotubes.
    Liao KS; Wan A; Batteas JD; Bergbreiter DE
    Langmuir; 2008 Apr; 24(8):4245-53. PubMed ID: 18324860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of superhydrophobic surfaces by synthesis of carbon nanotubes over Co-Mo nanocatalysts deposited under microwave irradiation on Ti-containing mesoporous silica thin films.
    Horiuchi Y; Shimizu Y; Kamegawa T; Mori K; Yamashita H
    Phys Chem Chem Phys; 2011 Apr; 13(13):6309-14. PubMed ID: 21359383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of polymer based nanocomposites with carbon nanotubes.
    Ciecierska E; Boczkowska A; Kurzydłowski KJ
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2690-9. PubMed ID: 24734681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible conversion of water-droplet mobility from rollable to pinned on a superhydrophobic functionalized carbon nanotube film.
    Yang J; Zhang Z; Men X; Xu X; Zhu X
    J Colloid Interface Sci; 2010 Jun; 346(1):241-7. PubMed ID: 20223465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films.
    Cui Z; Yin L; Wang Q; Ding J; Chen Q
    J Colloid Interface Sci; 2009 Sep; 337(2):531-7. PubMed ID: 19552913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Mechanical and Dielectric Properties of Epoxy Resin Using CNTs/ZnO Nanocomposite.
    Vu PG; Truc TA; Chinh NT; Tham DQ; Trung TH; Oanh VK; Hang TTX; Olivier M; Hoang T
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2830-2837. PubMed ID: 29442963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of anti-corrosion performance of an epoxy coating using hybrid UiO-66-NH
    Abdi J; Izadi M; Bozorg M
    Sci Rep; 2022 Jun; 12(1):10660. PubMed ID: 35739168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.
    Goswami D; Medda SK; De G
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3440-7. PubMed ID: 21823656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions.
    Zeng H; Kristiansen K; Wang P; Bergli J; Israelachvili J
    Langmuir; 2011 Jun; 27(11):7163-7. PubMed ID: 21553914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructuring of carbon nanotubes-nickel nanocomposite.
    An Z; He L; Toda M; Yamamoto G; Hashida T; Ono T
    Nanotechnology; 2015 May; 26(19):195601. PubMed ID: 25900535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locating carbon nanotubes (CNTs) at the surface of polymer microspheres using poly(vinyl alcohol) grafted CNTs as dispersion co-stabilizers.
    Thomassin JM; Molenberg I; Huynen I; Debuigne A; Alexandre M; Jérôme C; Detrembleur C
    Chem Commun (Camb); 2010 May; 46(19):3330-2. PubMed ID: 20386796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.