These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23336370)

  • 21. The Interfacial Polarization-Induced Electrorheological Effect.
    Hao T
    J Colloid Interface Sci; 1998 Oct; 206(1):240-246. PubMed ID: 9761649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure-Confined Mechanical and Electric Properties of the Electrorheological Fluids under the Oscillatory Mechanical Field.
    Hao T; Xu Y
    J Colloid Interface Sci; 1997 Jan; 185(2):324-31. PubMed ID: 9028885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; DurĂ¡n JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions.
    Di K; Zhu Y; Yang X; Li C
    J Colloid Interface Sci; 2006 Feb; 294(2):499-503. PubMed ID: 16125189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrorheological suspensions.
    Hao T
    Adv Colloid Interface Sci; 2002 Mar; 97(1-3):1-35. PubMed ID: 12027018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalized yield stress equation for electrorheological fluids.
    Zhang K; Liu YD; Jhon MS; Choi HJ
    J Colloid Interface Sci; 2013 Nov; 409():259-63. PubMed ID: 23993784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Electrorheological Performance of Nb-Doped TiO2 Microspheres Based Suspensions and Their Behavior Characteristics in Low-Frequency Dielectric Spectroscopy.
    Guo X; Chen Y; Su M; Li D; Li G; Li C; Tian Y; Hao C; Lei Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26624-32. PubMed ID: 26570989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear ac response of an electrorheological fluid.
    Wan JT; Gu GQ; Yu KW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):052501. PubMed ID: 11414943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The electrorheological behavior of suspensions based on molten-salt synthesized lithium titanate nanoparticles and their core-shell titanate/urea analogues.
    Plachy T; Mrlik M; Kozakova Z; Suly P; Sedlacik M; Pavlinek V; Kuritka I
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3725-31. PubMed ID: 25633327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrorheological properties of PMMA-b-PSt copolymer suspensions.
    Yilmaz H; Degirmenci M; Unal HI
    J Colloid Interface Sci; 2006 Jan; 293(2):489-95. PubMed ID: 16054638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Stimuli-Responsive Electrorheological Property of Poly(ionic liquid)s-Capsulated Polyaniline Particles.
    Zheng C; Dong Y; Liu Y; Zhao X; Yin J
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Switchable electrorheological activity of polyacrylonitrile microspheres by thermal treatment: from negative to positive.
    Do T; Ko YG; Chun Y; Jung Y; Choi US; Park YS; Woo JW
    Soft Matter; 2018 Nov; 14(44):8912-8923. PubMed ID: 30320320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced dielectric polarization and electro-responsive characteristic of graphene oxide-wrapped titania microspheres.
    Yin J; Shui Y; Dong Y; Zhao X
    Nanotechnology; 2014 Jan; 25(4):045702. PubMed ID: 24394540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear-induced particle rotation and its effect on electrorheological and dielectric properties in cellulose suspension.
    Misono Y; Negita K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061412. PubMed ID: 15697367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrorheological fluid under elongation, compression, and shearing.
    Tian Y; Meng Y; Mao H; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031507. PubMed ID: 11909066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.