These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23336925)

  • 21. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of chlorine and phosphorus on water soluble and exchangeable lead in a soil contaminated by lead and zinc mining tailings].
    Wang BL; Xie ZM; Li J; Wu WH; Jiang JT
    Huan Jing Ke Xue; 2008 Jun; 29(6):1724-8. PubMed ID: 18763530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium.
    Zhang W; Zhuang L; Yuan Y; Tong L; Tsang DC
    Chemosphere; 2011 Apr; 83(3):302-10. PubMed ID: 21232783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.
    Hashimoto Y; Takaoka M; Oshita K; Tanida H
    Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of phosphate application on the mobility of antimony in firing range soils.
    Griggs CS; Martin WA; Larson SL; O'Connnor G; Fabian G; Zynda G; Mackie D
    Sci Total Environ; 2011 May; 409(12):2397-403. PubMed ID: 21440928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid.
    Su X; Zhu J; Fu Q; Zuo J; Liu Y; Hu H
    J Environ Sci (China); 2015 Feb; 28():64-73. PubMed ID: 25662240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles.
    Xu Y; Fang Z; Tsang EP
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19164-72. PubMed ID: 27351875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum.
    Hashimoto Y; Yamaguchi N; Takaoka M; Shiota K
    Sci Total Environ; 2011 Feb; 409(5):1001-7. PubMed ID: 21146856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science.
    Scheckel KG; Diamond GL; Burgess MF; Klotzbach JM; Maddaloni M; Miller BW; Partridge CR; Serda SM
    J Toxicol Environ Health B Crit Rev; 2013; 16(6):337-80. PubMed ID: 24151967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture.
    Mallampati SR; Mitoma Y; Okuda T; Sakita S; Kakeda M
    Chemosphere; 2012 Oct; 89(6):717-23. PubMed ID: 22818089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using Ca3(PO4)2 nanoparticles to reduce metal mobility in shooting range soils.
    Arenas-Lago D; Rodríguez-Seijo A; Lago-Vila M; Couce LA; Vega FA
    Sci Total Environ; 2016 Nov; 571():1136-46. PubMed ID: 27450953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution.
    Finzgar N; Lestan D
    Chemosphere; 2008 Nov; 73(9):1484-91. PubMed ID: 18762318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling.
    Voglar D; Lestan D
    Chemosphere; 2013 Mar; 91(1):76-82. PubMed ID: 23347619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils.
    Chen SB; Zhu YG; Ma YB
    J Hazard Mater; 2006 Jun; 134(1-3):74-9. PubMed ID: 16310936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment.
    Wan J; Zhang C; Zeng G; Huang D; Hu L; Huang C; Wu H; Wang L
    J Hazard Mater; 2016 Dec; 320():278-288. PubMed ID: 27565852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.