These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23337361)

  • 1. Automatic motor task selection via a bandit algorithm for a brain-controlled button.
    Fruitet J; Carpentier A; Munos R; Clerc M
    J Neural Eng; 2013 Feb; 10(1):016012. PubMed ID: 23337361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data.
    Delgado Saa JF; Çetin M
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):716-24. PubMed ID: 23807456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network.
    Hazrati MKh; Erfanian A
    Med Eng Phys; 2010 Sep; 32(7):730-9. PubMed ID: 20510641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic co-adaptive brain-computer interfacing.
    Bryan MJ; Martin SA; Cheung W; Rao RP
    J Neural Eng; 2013 Dec; 10(6):066008. PubMed ID: 24140680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-paced brain-computer interface control of ambulation in a virtual reality environment.
    Wang PT; King CE; Chui LA; Do AH; Nenadic Z
    J Neural Eng; 2012 Oct; 9(5):056016. PubMed ID: 23010771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design.
    Huan NJ; Palaniappan R
    J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards adaptive classification for BCI.
    Shenoy P; Krauledat M; Blankertz B; Rao RP; Müller KR
    J Neural Eng; 2006 Mar; 3(1):R13-23. PubMed ID: 16510936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reductionist approach to the analysis of learning in brain-computer interfaces.
    Danziger Z
    Biol Cybern; 2014 Apr; 108(2):183-201. PubMed ID: 24531644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods.
    Schreuder M; Höhne J; Blankertz B; Haufe S; Dickhaus T; Tangermann M
    J Neural Eng; 2013 Jun; 10(3):036025. PubMed ID: 23685458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.