These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23337361)

  • 21. Optimizing event-related potential based brain-computer interfaces: a systematic evaluation of dynamic stopping methods.
    Schreuder M; Höhne J; Blankertz B; Haufe S; Dickhaus T; Tangermann M
    J Neural Eng; 2013 Jun; 10(3):036025. PubMed ID: 23685458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EEG-based synchronized brain-computer interfaces: a model for optimizing the number of mental tasks.
    Kronegg J; Chanel G; Voloshynovskiy S; Pun T
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):50-8. PubMed ID: 17436876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the use of interaction error potentials for adaptive brain computer interfaces.
    Llera A; van Gerven MA; Gómez V; Jensen O; Kappen HJ
    Neural Netw; 2011 Dec; 24(10):1120-7. PubMed ID: 21696919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining ERD and ERS features to create a system-paced BCI.
    Thomas E; Fruitet J; Clerc M
    J Neurosci Methods; 2013 Jun; 216(2):96-103. PubMed ID: 23624244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of multimodal and enriched feedback on SMR-BCI performance.
    Sollfrank T; Ramsay A; Perdikis S; Williamson J; Murray-Smith R; Leeb R; Millán JDR; Kübler A
    Clin Neurophysiol; 2016 Jan; 127(1):490-498. PubMed ID: 26138148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.
    Saa JF; Çetin M
    J Neural Eng; 2012 Apr; 9(2):026020. PubMed ID: 22414728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An extended EM algorithm for joint feature extraction and classification in brain-computer interfaces.
    Li Y; Guan C
    Neural Comput; 2006 Nov; 18(11):2730-61. PubMed ID: 16999577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards a hemodynamic BCI using transcranial Doppler without user-specific training data.
    Aleem I; Chau T
    J Neural Eng; 2013 Feb; 10(1):016005. PubMed ID: 23234760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term evaluation of a 4-class imagery-based brain-computer interface.
    Friedrich EV; Scherer R; Neuper C
    Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On optimal channel configurations for SMR-based brain-computer interfaces.
    Sannelli C; Dickhaus T; Halder S; Hammer EM; Müller KR; Blankertz B
    Brain Topogr; 2010 Jun; 23(2):186-93. PubMed ID: 20162347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EEG data space adaptation to reduce intersession nonstationarity in brain-computer interface.
    Arvaneh M; Guan C; Ang KK; Quek C
    Neural Comput; 2013 Aug; 25(8):2146-71. PubMed ID: 23663147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An analysis of performance evaluation for motor-imagery based BCI.
    Thomas E; Dyson M; Clerc M
    J Neural Eng; 2013 Jun; 10(3):031001. PubMed ID: 23639955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural mechanisms of brain-computer interface control.
    Halder S; Agorastos D; Veit R; Hammer EM; Lee S; Varkuti B; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2011 Apr; 55(4):1779-90. PubMed ID: 21256234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Online control of a brain-computer interface using phase synchronization.
    Brunner C; Scherer R; Graimann B; Supp G; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2501-6. PubMed ID: 17153207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EEG-based decoding of error-related brain activity in a real-world driving task.
    Zhang H; Chavarriaga R; Khaliliardali Z; Gheorghe L; Iturrate I; Millán Jd
    J Neural Eng; 2015 Dec; 12(6):066028. PubMed ID: 26595103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.