These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23337361)

  • 41. Identification of the phase code in an EEG during gripping-force tasks: a possible alternative approach to the development of the brain-computer interfaces.
    Logar V; Skrjanc I; Belic A; Brezan S; Koritnik B; Zidar J
    Artif Intell Med; 2008 Sep; 44(1):41-9. PubMed ID: 18657956
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How many people are able to operate an EEG-based brain-computer interface (BCI)?
    Guger C; Edlinger G; Harkam W; Niedermayer I; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):145-7. PubMed ID: 12899258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of distinct mental strategies on classification performance for brain-computer interfaces.
    Friedrich EV; Scherer R; Neuper C
    Int J Psychophysiol; 2012 Apr; 84(1):86-94. PubMed ID: 22289414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High γ-power predicts performance in sensorimotor-rhythm brain-computer interfaces.
    Grosse-Wentrup M; Schölkopf B
    J Neural Eng; 2012 Aug; 9(4):046001. PubMed ID: 22713543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative analysis of task selection for brain-computer interfaces.
    Llera A; Gómez V; Kappen HJ
    J Neural Eng; 2014 Oct; 11(5):056002. PubMed ID: 25080297
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A maximum mutual information approach for constructing a 1D continuous control signal at a self-paced brain-computer interface.
    Zhang H; Guan C
    J Neural Eng; 2010 Oct; 7(5):056009. PubMed ID: 20841636
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Link between the Increase in Electroencephalographic Coherence and Performance Improvement in Operating a Brain-Computer Interface.
    Angulo-Sherman IN; Gutiérrez D
    Comput Intell Neurosci; 2015; 2015():824175. PubMed ID: 26290661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous 2D control via state-machine triggered by endogenous sensory discrimination and a fast brain switch.
    Xu R; Dosen S; Jiang N; Yao L; Farooq A; Jochumsen M; Mrachacz-Kersting N; Dremstrup K; Farina D
    J Neural Eng; 2019 Jul; 16(5):056001. PubMed ID: 31075785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The analytic common spatial patterns method for EEG-based BCI data.
    Falzon O; Camilleri KP; Muscat J
    J Neural Eng; 2012 Aug; 9(4):045009. PubMed ID: 22832090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Psychological predictors of SMR-BCI performance.
    Hammer EM; Halder S; Blankertz B; Sannelli C; Dickhaus T; Kleih S; Müller KR; Kübler A
    Biol Psychol; 2012 Jan; 89(1):80-6. PubMed ID: 21964375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Balancing a simulated inverted pendulum through motor imagery: an EEG-based real-time control paradigm.
    Yue J; Zhou Z; Jiang J; Liu Y; Hu D
    Neurosci Lett; 2012 Aug; 524(2):95-100. PubMed ID: 22841698
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A motor imagery-based online interactive brain-controlled switch: paradigm development and preliminary test.
    Qian K; Nikolov P; Huang D; Fei DY; Chen X; Bai O
    Clin Neurophysiol; 2010 Aug; 121(8):1304-13. PubMed ID: 20347386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time decoding of the direction of covert visuospatial attention.
    Andersson P; Ramsey NF; Raemaekers M; Viergever MA; Pluim JP
    J Neural Eng; 2012 Aug; 9(4):045004. PubMed ID: 22831959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel task-oriented optimal design for P300-based brain-computer interfaces.
    Zhou Z; Yin E; Liu Y; Jiang J; Hu D
    J Neural Eng; 2014 Oct; 11(5):056003. PubMed ID: 25080373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.