These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23337502)

  • 61. Blood tolerant laccase by directed evolution.
    Mate DM; Gonzalez-Perez D; Falk M; Kittl R; Pita M; De Lacey AL; Ludwig R; Shleev S; Alcalde M
    Chem Biol; 2013 Feb; 20(2):223-31. PubMed ID: 23438751
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Determinants of the relative reduction potentials of type-1 copper sites in proteins.
    Li H; Webb SP; Ivanic J; Jensen JH
    J Am Chem Soc; 2004 Jun; 126(25):8010-9. PubMed ID: 15212551
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile.
    Xu F; Berka RM; Wahleithner JA; Nelson BA; Shuster JR; Brown SH; Palmer AE; Solomon EI
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):63-70. PubMed ID: 9693103
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Desulfovibrio DA2_CueO is a novel multicopper oxidase with cuprous, ferrous and phenol oxidase activity.
    Mancini S; Kumar R; Mishra V; Solioz M
    Microbiology (Reading); 2017 Aug; 163(8):1229-1236. PubMed ID: 28749328
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
    Mogi T; Endou S; Akimoto S; Morimoto-Tadokoro M; Miyoshi H
    Biochemistry; 2006 Dec; 45(51):15785-92. PubMed ID: 17176101
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structure of a multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Sakuraba H; Koga K; Yoneda K; Kashima Y; Ohshima T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jul; 67(Pt 7):753-7. PubMed ID: 21795787
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The reversible depletion and reconstitution of a copper ion in Coprinus cinereus laccase followed by spectroscopic techniques.
    Bukh C; Bjerrum MJ
    J Inorg Biochem; 2010 Oct; 104(10):1029-37. PubMed ID: 20609477
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A versatile and efficient markerless gene disruption system for Acidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene.
    Wen Q; Liu X; Wang H; Lin J
    Environ Microbiol; 2014 Nov; 16(11):3499-514. PubMed ID: 24797809
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enhanced archaeal laccase production in recombinant Escherichia coli by modification of N-terminal propeptide and twin arginine translocation motifs.
    Uthandi S; Prunetti L; De Vera IM; Fanucci GE; Angerhofer A; Maupin-Furlow JA
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1523-32. PubMed ID: 22752793
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure and function of type I copper in multicopper oxidases.
    Sakurai T; Kataoka K
    Cell Mol Life Sci; 2007 Oct; 64(19-20):2642-56. PubMed ID: 17639274
    [TBL] [Abstract][Full Text] [Related]  

  • 71. "Blue" laccases.
    Morozova OV; Shumakovich GP; Gorbacheva MA; Shleev SV; Yaropolov AI
    Biochemistry (Mosc); 2007 Oct; 72(10):1136-50. PubMed ID: 18021071
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of a generic approach to native metalloproteomics: application to the quantitative identification of soluble copper proteins in Escherichia coli.
    Sevcenco AM; Krijger GC; Pinkse MW; Verhaert PD; Hagen WR; Hagedoorn PL
    J Biol Inorg Chem; 2009 May; 14(4):631-40. PubMed ID: 19205756
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera.
    Hoopes JT; Dean JF
    Plant Physiol Biochem; 2004 Jan; 42(1):27-33. PubMed ID: 15061081
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance.
    Roulling F; Godin A; Feller G
    Biochimie; 2022 Mar; 194():118-126. PubMed ID: 34982982
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Studies on laccases of lacquer trees. III. Reconstruction of laccase from its protein and copper.
    OMURA T
    J Biochem; 1961 Nov; 50():389-93. PubMed ID: 14482010
    [No Abstract]   [Full Text] [Related]  

  • 76. Roles of the indole ring of Trp396 covalently bound with the imidazole ring of His398 coordinated to type I copper in bilirubin oxidase.
    Kataoka K; Ito T; Okuda Y; Sakai Y; Yamashita S; Sakurai T
    Biochem Biophys Res Commun; 2020 Jan; 521(3):620-624. PubMed ID: 31679691
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The role of cyanide in the removal of type 2 copper from laccase.
    Eggleston MK; Pecoraro C; McMillin DR
    Arch Biochem Biophys; 1995 Jul; 320(2):276-9. PubMed ID: 7625834
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Function and molecular evolution of multicopper blue proteins.
    Nakamura K; GO N
    Cell Mol Life Sci; 2005 Sep; 62(18):2050-66. PubMed ID: 16091847
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reconstruction of laccase from its protein and copper.
    TISSIERES A
    Nature; 1948 Aug; 162(4113):340. PubMed ID: 18878920
    [No Abstract]   [Full Text] [Related]  

  • 80. Substitution for copper in YBa2Cu3Oy: The first 3%.
    Kistenmacher TJ
    Phys Rev B Condens Matter; 1988 Nov; 38(13):8862-8867. PubMed ID: 9945664
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.