These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 23337505)
1. The X-ray crystal structure of PA1374 from Pseudomonas aeruginosa, a putative oxidative-stress sensing transcriptional regulator. Kim H; Choe J Biochem Biophys Res Commun; 2013 Feb; 431(3):376-81. PubMed ID: 23337505 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of Pseudomonas aeruginosa PA2196, a putative TetR family transcriptional repressor. Kang Y; Choe J Biochem Biophys Res Commun; 2011 Jun; 410(1):52-6. PubMed ID: 21635871 [TBL] [Abstract][Full Text] [Related]
3. Insights into the Rrf2 repressor family--the structure of CymR, the global cysteine regulator of Bacillus subtilis. Shepard W; Soutourina O; Courtois E; England P; Haouz A; Martin-Verstraete I FEBS J; 2011 Aug; 278(15):2689-701. PubMed ID: 21624051 [TBL] [Abstract][Full Text] [Related]
4. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Alekshun MN; Levy SB; Mealy TR; Seaton BA; Head JF Nat Struct Biol; 2001 Aug; 8(8):710-4. PubMed ID: 11473263 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of Pseudomonas aeruginosa transcriptional regulator PA2196 bound to its operator DNA. Kim Y; Kang Y; Choe J Biochem Biophys Res Commun; 2013 Oct; 440(2):317-21. PubMed ID: 24070609 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. Perera IC; Grove A J Mol Cell Biol; 2010 Oct; 2(5):243-54. PubMed ID: 20716550 [TBL] [Abstract][Full Text] [Related]
7. Structure and function of the arginine repressor-operator complex from Bacillus subtilis. Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186 [TBL] [Abstract][Full Text] [Related]
8. SCO4008, a putative TetR transcriptional repressor from Streptomyces coelicolor A3(2), regulates transcription of sco4007 by multidrug recognition. Hayashi T; Tanaka Y; Sakai N; Okada U; Yao M; Watanabe N; Tamura T; Tanaka I J Mol Biol; 2013 Sep; 425(18):3289-300. PubMed ID: 23831227 [TBL] [Abstract][Full Text] [Related]
9. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR. Giardina G; Rinaldo S; Johnson KA; Di Matteo A; Brunori M; CutruzzolĂ F J Mol Biol; 2008 May; 378(5):1002-15. PubMed ID: 18420222 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7. Miyazono K; Tsujimura M; Kawarabayasi Y; Tanokura M Proteins; 2007 Jun; 67(4):1138-46. PubMed ID: 17357153 [TBL] [Abstract][Full Text] [Related]
11. Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR. Chen H; Yi C; Zhang J; Zhang W; Ge Z; Yang CG; He C EMBO Rep; 2010 Sep; 11(9):685-90. PubMed ID: 20616806 [TBL] [Abstract][Full Text] [Related]
12. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Hong M; Fuangthong M; Helmann JD; Brennan RG Mol Cell; 2005 Oct; 20(1):131-41. PubMed ID: 16209951 [TBL] [Abstract][Full Text] [Related]
13. Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum. Saridakis V; Shahinas D; Xu X; Christendat D J Mol Biol; 2008 Mar; 377(3):655-67. PubMed ID: 18272181 [TBL] [Abstract][Full Text] [Related]
14. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling. Hamed MY; Al-Jabour S J Mol Graph Model; 2006 Oct; 25(2):234-46. PubMed ID: 16443380 [TBL] [Abstract][Full Text] [Related]
15. The Ku-Mar zinc finger: A segment-swapped zinc ribbon in MarR-like transcription regulators related to the Ku bridge. Kaur G; Subramanian S J Struct Biol; 2015 Sep; 191(3):281-9. PubMed ID: 26208468 [TBL] [Abstract][Full Text] [Related]
16. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Palma M; Zurita J; Ferreras JA; Worgall S; Larone DH; Shi L; Campagne F; Quadri LE Infect Immun; 2005 May; 73(5):2958-66. PubMed ID: 15845502 [TBL] [Abstract][Full Text] [Related]
17. MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. Matsuo Y; Eda S; Gotoh N; Yoshihara E; Nakae T FEMS Microbiol Lett; 2004 Sep; 238(1):23-8. PubMed ID: 15336398 [TBL] [Abstract][Full Text] [Related]
18. The X-ray crystal structure of PA1607 from Pseudomonas aureginosa at 1.9 A resolution--a putative transcription factor. Sieminska EA; Xu X; Savchenko A; Sanders DA Protein Sci; 2007 Mar; 16(3):543-9. PubMed ID: 17322537 [TBL] [Abstract][Full Text] [Related]
19. The crystal structure of the transcriptional regulator HucR from Deinococcus radiodurans reveals a repressor preconfigured for DNA binding. Bordelon T; Wilkinson SP; Grove A; Newcomer ME J Mol Biol; 2006 Jun; 360(1):168-77. PubMed ID: 16750221 [TBL] [Abstract][Full Text] [Related]
20. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Fuhrmann J; Schmidt A; Spiess S; Lehner A; Turgay K; Mechtler K; Charpentier E; Clausen T Science; 2009 Jun; 324(5932):1323-7. PubMed ID: 19498169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]