These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23337605)

  • 1. Removal of cytostatic drugs from aquatic environment: a review.
    Zhang J; Chang VW; Giannis A; Wang JY
    Sci Total Environ; 2013 Feb; 445-446():281-98. PubMed ID: 23337605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain).
    Franquet-Griell H; Gómez-Canela C; Ventura F; Lacorte S
    Environ Res; 2015 Apr; 138():161-72. PubMed ID: 25721243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: an increasing challenge calling for higher emphasis on measures at the beginning of the pipe.
    Haddad T; Baginska E; Kümmerer K
    Water Res; 2015 Apr; 72():75-126. PubMed ID: 25600206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring, removal and risk assessment of cytostatic drugs in hospital wastewater.
    Lenz K; Mahnik SN; Weissenbacher N; Mader RM; Krenn P; Hann S; Koellensperger G; Uhl M; Knasmüller S; Ferk F; Bursch W; Fuerhacker M
    Water Sci Technol; 2007; 56(12):141-9. PubMed ID: 18075190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China.
    Yin J; Shao B; Zhang J; Li K
    Bull Environ Contam Toxicol; 2010 Jan; 84(1):39-45. PubMed ID: 19795089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment for organic trace compounds in wastewater: comparison of conventional and advanced treatment.
    Schwätter F; Hannich CB; Nöthe T; Oehlmann J; Fahlenkamp H
    Water Sci Technol; 2007; 56(5):9-13. PubMed ID: 17881832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation and removal methods of antibiotics from aqueous matrices--a review.
    Homem V; Santos L
    J Environ Manage; 2011 Oct; 92(10):2304-47. PubMed ID: 21680081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and photochemical degradation of cytostatic drugs under laboratory conditions.
    Franquet-Griell H; Medina A; Sans C; Lacorte S
    J Hazard Mater; 2017 Feb; 323(Pt A):319-328. PubMed ID: 27421981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The challenge of micropollutants in aquatic systems.
    Schwarzenbach RP; Escher BI; Fenner K; Hofstetter TB; Johnson CA; von Gunten U; Wehrli B
    Science; 2006 Aug; 313(5790):1072-7. PubMed ID: 16931750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytostatic pharmaceuticals as water contaminants.
    Jureczko M; Kalka J
    Eur J Pharmacol; 2020 Jan; 866():172816. PubMed ID: 31758938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts.
    Guéguen M; Amiard JC; Arnich N; Badot PM; Claisse D; Guérin T; Vernoux JP
    Rev Environ Contam Toxicol; 2011; 213():55-111. PubMed ID: 21541848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies.
    Ribeiro AR; Sures B; Schmidt TC
    Environ Pollut; 2018 Oct; 241():1153-1166. PubMed ID: 30029325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of endocrine disruptors by tertiary treatments and constructed wetlands in subtropical Australia.
    Chapman H
    Water Sci Technol; 2003; 47(9):151-6. PubMed ID: 12830954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs?
    Besse JP; Latour JF; Garric J
    Environ Int; 2012 Feb; 39(1):73-86. PubMed ID: 22208745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: Towards cytostatic drug elimination.
    Janssens R; Mandal MK; Dubey KK; Luis P
    Sci Total Environ; 2017 Dec; 599-600():612-626. PubMed ID: 28494286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes.
    Klavarioti M; Mantzavinos D; Kassinos D
    Environ Int; 2009 Feb; 35(2):402-17. PubMed ID: 18760478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes.
    Ziylan A; Ince NH
    J Hazard Mater; 2011 Mar; 187(1-3):24-36. PubMed ID: 21315511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights on cytostatic drug risk assessment in aquatic environments based on measured concentrations in surface waters.
    Gouveia TIA; Alves A; Santos MSF
    Environ Int; 2019 Dec; 133(Pt B):105236. PubMed ID: 31675568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.