These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23337625)

  • 1. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization.
    Zhang Y; Liu BS; Zhang FM; Zhang ZF
    J Hazard Mater; 2013 Mar; 248-249():81-8. PubMed ID: 23337625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.
    Zhang FM; Liu BS; Zhang Y; Guo YH; Wan ZY; Subhan F
    J Hazard Mater; 2012 Sep; 233-234():219-27. PubMed ID: 22835768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.
    Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS
    J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas.
    Wang J; Qiu B; Han L; Feng G; Hu Y; Chang L; Bao W
    J Hazard Mater; 2012 Apr; 213-214():184-92. PubMed ID: 22341981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of functional xLayMn/KIT-6 and features in hot coal gas desulphurization.
    Xia H; Zhang F; Zhang Z; Liu B
    Phys Chem Chem Phys; 2015 Aug; 17(32):20667-76. PubMed ID: 26204251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO
    Zhang S; Zhao Y; Wang Z; Zhang J; Wang L; Zheng C
    J Environ Sci (China); 2017 Mar; 53():141-150. PubMed ID: 28372738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High temperature removal of hydrogen sulfide using an N-150 sorbent.
    Ko TH; Chu H; Chaung LK; Tseng TK
    J Hazard Mater; 2004 Oct; 114(1-3):145-52. PubMed ID: 15511585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports.
    Ko TH; Chu H; Chaung LK
    Chemosphere; 2005 Jan; 58(4):467-74. PubMed ID: 15620738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of coal gas desulfurization by iron oxide sorbents.
    Lin YH; Chen YC; Chu H
    Chemosphere; 2015 Feb; 121():62-7. PubMed ID: 25434261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.
    Lee JY; Ju Y; Keener TC; Varma RS
    Environ Sci Technol; 2006 Apr; 40(8):2714-20. PubMed ID: 16683613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ incorporation of nickel nanoparticles into the mesopores of MCM-41 by manipulation of solvent-solute interaction and its activity toward adsorptive desulfurization of gas oil.
    Samadi-Maybodi A; Teymouri M; Vahid A; Miranbeigi A
    J Hazard Mater; 2011 Sep; 192(3):1667-74. PubMed ID: 21820806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies.
    Dhage P; Samokhvalov A; Repala D; Duin EC; Tatarchuk BJ
    Phys Chem Chem Phys; 2011 Feb; 13(6):2179-87. PubMed ID: 21132188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal.
    Zhang G; Qu J; Liu H; Liu R; Wu R
    Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of ultra-low-sulfur gasoline: an equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents.
    Subhan F; Liu BS; Zhang QL; Wang WS
    J Hazard Mater; 2012 Nov; 239-240():370-80. PubMed ID: 23022413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High H
    Xia H; Liu B
    J Hazard Mater; 2017 Feb; 324(Pt B):281-290. PubMed ID: 27810326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization.
    Lee KT; Bhatia S; Mohamed AR; Chu KH
    Chemosphere; 2006 Jan; 62(1):89-96. PubMed ID: 15996711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas.
    Ko TH; Chu H; Liou YJ
    J Hazard Mater; 2007 Aug; 147(1-2):334-41. PubMed ID: 17293040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of manganese-coated sand using SEM and EDAX analysis.
    Hu PY; Hsieh YH; Chen JC; Chang CY
    J Colloid Interface Sci; 2004 Apr; 272(2):308-13. PubMed ID: 15028491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice substitution and desulfurization kinetic analysis of Zn-based spinel sorbents loading onto porous silicoaluminophosphate zeolites.
    Liu Q; Liu B; Liu Q; Xu R; Xia H
    J Hazard Mater; 2020 Feb; 383():121151. PubMed ID: 31678744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.