BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23337713)

  • 21. A comparison study between single- and dual-energy CT density extraction methods for neurological proton monte carlo treatment planning.
    van der Heyden B; Almeida IP; Vilches-Freixas G; Van Beveren C; Vaniqui A; Ares C; Terhaag K; Fonseca GP; Eekers DBP; Verhaegen F
    Acta Oncol; 2020 Feb; 59(2):171-179. PubMed ID: 31646923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy.
    Killoran JH; Kooy HM; Gladstone DJ; Welte FJ; Beard CJ
    Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):213-21. PubMed ID: 9054898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inclusion of a variable RBE into proton and photon plan comparison for various fractionation schedules in prostate radiation therapy.
    Ödén J; Eriksson K; Toma-Dasu I
    Med Phys; 2017 Mar; 44(3):810-822. PubMed ID: 28107554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy.
    Ramos-Méndez J; Perl J; Faddegon B; Schümann J; Paganetti H
    Med Phys; 2013 Apr; 40(4):041718. PubMed ID: 23556888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea.
    Shin WG; Testa M; Kim HS; Jeong JH; Lee SB; Kim YJ; Min CH
    Phys Med Biol; 2017 Sep; 62(19):7598-7616. PubMed ID: 28809759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fan-beam intensity modulated proton therapy.
    Hill P; Westerly D; Mackie T
    Med Phys; 2013 Nov; 40(11):111704. PubMed ID: 24320412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method for acquiring random range uncertainty probability distributions in proton therapy.
    Holloway SM; Holloway MD; Thomas SJ
    Phys Med Biol; 2017 Dec; 63(1):01NT02. PubMed ID: 29053110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of model and dose uncertainty on model-based selection of oropharyngeal cancer patients for proton therapy.
    Bijman RG; Breedveld S; Arts T; Astreinidou E; de Jong MA; Granton PV; Petit SF; Hoogeman MS
    Acta Oncol; 2017 Nov; 56(11):1444-1450. PubMed ID: 28828923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reassessment of stopping power ratio uncertainties caused by mean excitation energies using a water-based formalism.
    De Smet V; Labarbe R; Vander Stappen F; Macq B; Sterpin E
    Med Phys; 2018 Jul; 45(7):3361-3370. PubMed ID: 29729022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust optimization of intensity modulated proton therapy.
    Liu W; Zhang X; Li Y; Mohan R
    Med Phys; 2012 Feb; 39(2):1079-91. PubMed ID: 22320818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of water equivalent ratios for various materials at proton energies ranging 10-500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes.
    Safigholi H; Song WY
    Phys Med Biol; 2018 Jul; 63(15):155010. PubMed ID: 29968580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Technical Note: Monte Carlo methods to comprehensively evaluate the robustness of 4D treatments in proton therapy.
    Souris K; Barragan Montero A; Janssens G; Di Perri D; Sterpin E; Lee JA
    Med Phys; 2019 Oct; 46(10):4676-4684. PubMed ID: 31376305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy.
    Testa M; Schümann J; Lu HM; Shin J; Faddegon B; Perl J; Paganetti H
    Med Phys; 2013 Dec; 40(12):121719. PubMed ID: 24320505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hypofractionated proton therapy for prostate cancer: dose delivery uncertainty due to interfractional motion.
    Wang Y; Efstathiou JA; Lu HM; Sharp GC; Trofimov A
    Med Phys; 2013 Jul; 40(7):071714. PubMed ID: 23822418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy.
    Schuemann J; Giantsoudi D; Grassberger C; Moteabbed M; Min CH; Paganetti H
    Int J Radiat Oncol Biol Phys; 2015 Aug; 92(5):1157-1164. PubMed ID: 26025779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning.
    Chetty IJ; Rosu M; Kessler ML; Fraass BA; Ten Haken RK; Kong FM; McShan DL
    Int J Radiat Oncol Biol Phys; 2006 Jul; 65(4):1249-59. PubMed ID: 16798417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive step size algorithm to increase efficiency of proton macro Monte Carlo dose calculation.
    Kueng R; Frei D; Volken W; Stuermlin F; M Stampanoni MF; Aebersold DM; Manser P; Fix MK
    Radiat Oncol; 2019 Sep; 14(1):165. PubMed ID: 31500647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fast robust optimizer for intensity modulated proton therapy using GPU.
    Xu Y; Chen J; Cao R; Liu H; Xu XG; Pei X
    J Appl Clin Med Phys; 2020 Mar; 21(3):123-133. PubMed ID: 32141699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.