These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 23337851)
21. Compact bone fatigue damage: a microscopic examination. Carter DR; Hayes WC Clin Orthop Relat Res; 1977; (127):265-74. PubMed ID: 912990 [TBL] [Abstract][Full Text] [Related]
22. Application of fracture mechanics to failure in manatee rib bone. Yan J; Clifton KB; Reep RL; Mecholsky JJ J Biomech Eng; 2006 Jun; 128(3):281-9. PubMed ID: 16706577 [TBL] [Abstract][Full Text] [Related]
23. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. Chong AC; Miller F; Buxton M; Friis EA J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469 [TBL] [Abstract][Full Text] [Related]
24. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. Martin RB; Stover SM; Gibson VA; Gibeling JC; Griffin LV J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774 [TBL] [Abstract][Full Text] [Related]
25. Dynamic short crack growth in cortical bone. Hazenberg JG; Taylor D; Lee TC Technol Health Care; 2006; 14(4-5):393-402. PubMed ID: 17065760 [TBL] [Abstract][Full Text] [Related]
26. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones. Zhang G; Jia X; Li Z; Wang Q; Gu H; Liu Y; Bai Z; Mao H J Mech Behav Biomed Mater; 2024 Mar; 151():106387. PubMed ID: 38246092 [TBL] [Abstract][Full Text] [Related]
27. The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. Motherway JA; Verschueren P; Van der Perre G; Vander Sloten J; Gilchrist MD J Biomech; 2009 Sep; 42(13):2129-35. PubMed ID: 19640538 [TBL] [Abstract][Full Text] [Related]
28. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. Currey JD J Biomech; 2004 Apr; 37(4):549-56. PubMed ID: 14996567 [TBL] [Abstract][Full Text] [Related]
30. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes. Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027 [TBL] [Abstract][Full Text] [Related]
31. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Abdel-Wahab AA; Alam K; Silberschmidt VV J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728 [TBL] [Abstract][Full Text] [Related]
32. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses. Zioupos P; Currey JD; Mirza MS; Barton DC Philos Trans R Soc Lond B Biol Sci; 1995 Mar; 347(1322):383-96. PubMed ID: 7597104 [TBL] [Abstract][Full Text] [Related]
33. [Biomechanical evaluation of biointegrable suture anchors composed of bovine compact bone in a pull-to-failure test in porcine tibial head specimens]. Jöckel JA; Strehl R; Gotzen L Z Orthop Ihre Grenzgeb; 2006; 144(6):626-31. PubMed ID: 17187339 [TBL] [Abstract][Full Text] [Related]
34. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches. Pithioux M; Subit D; Chabrand P Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692 [TBL] [Abstract][Full Text] [Related]
35. Damage accumulation in vertebral trabecular bone depends on loading mode and direction. Wolfram U; Wilke HJ; Zysset PK J Biomech; 2011 Apr; 44(6):1164-9. PubMed ID: 21295781 [TBL] [Abstract][Full Text] [Related]
36. Finite element modeling for strain rate dependency of fracture resistance in compact bone. Charoenphan S; Polchai A J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094 [TBL] [Abstract][Full Text] [Related]
37. The effect of strain rate on the mechanical properties of human cortical bone. Hansen U; Zioupos P; Simpson R; Currey JD; Hynd D J Biomech Eng; 2008 Feb; 130(1):011011. PubMed ID: 18298187 [TBL] [Abstract][Full Text] [Related]
38. Mechanical and morphological effects of strain rate on fatigue of compact bone. Schaffler MB; Radin EL; Burr DB Bone; 1989; 10(3):207-14. PubMed ID: 2803855 [TBL] [Abstract][Full Text] [Related]
39. The development of microcracking and failure in bone depends on the loading mode to which it is adapted. Reilly GC; Currey JD J Exp Biol; 1999 Mar; 202(Pt 5):543-52. PubMed ID: 9929457 [TBL] [Abstract][Full Text] [Related]
40. Microcrack accumulation at different intervals during fatigue testing of compact bone. O'Brien FJ; Taylor D; Lee TC J Biomech; 2003 Jul; 36(7):973-80. PubMed ID: 12757806 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]