These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 23337875)

  • 1. Genome-wide characterization of the relationship between essential and TATA-containing genes.
    Han HW; Bae SH; Jung YH; Kim JH; Moon J
    FEBS Lett; 2013 Mar; 587(5):444-51. PubMed ID: 23337875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of the molecular interactions of TATA box-containing genes and essential genes.
    Bae SH; Han HW; Moon J
    PLoS One; 2015; 10(3):e0120848. PubMed ID: 25789484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterize the relationship between essential and TATA-containing genes for S. cerevisiae by network topologies in the perturbation sensitivity network.
    Yang L; Wang S; Zhou M; Chen X; Zuo Y; Lv Y
    Genomics; 2016 Oct; 108(3-4):177-183. PubMed ID: 27613113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of TATA-containing genes and TATA-less genes in S. cerevisiae by network topologies and biological properties.
    Yang L; Wang J; Lv Y; Hao D; Zuo Y; Li X; Jiang W
    Genomics; 2014 Dec; 104(6 Pt B):562-71. PubMed ID: 25451177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the activation domain of Ifh1, an activator of model TATA-less genes.
    Zhong P; Melcher K
    Biochem Biophys Res Commun; 2010 Jan; 392(1):77-82. PubMed ID: 20059977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TATA-dependent and TATA-independent transcription at the HIS4 gene of yeast.
    Pellman D; McLaughlin ME; Fink GR
    Nature; 1990 Nov; 348(6296):82-5. PubMed ID: 2234066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box.
    Horikoshi M; Wang CK; Fujii H; Cromlish JA; Weil PA; Roeder RG
    Nature; 1989 Sep; 341(6240):299-303. PubMed ID: 2677740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of the effects of location and number of stress response elements on gene expression in Saccharomyces cerevisiae.
    Yoshikawa K; Furusawa C; Hirasawa T; Shimizu H
    J Biosci Bioeng; 2008 Nov; 106(5):507-10. PubMed ID: 19111649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of essential genes by topological properties in the perturbation sensitivity network.
    Yang L; Wang J; Wang H; Lv Y; Zuo Y; Jiang W
    Biochem Biophys Res Commun; 2014 Jun; 448(4):473-9. PubMed ID: 24802397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a Candida glabrata homologue of RAP1, a regulator of transcription and telomere function in Saccharomyces cerevisiae.
    Haw R; Yarragudi AD; Uemura H
    Yeast; 2001 Oct; 18(14):1277-84. PubMed ID: 11571752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. YGA: identifying distinct biological features between yeast gene sets.
    Chang DT; Li WS; Bai YH; Wu WS
    Gene; 2013 Apr; 518(1):26-34. PubMed ID: 23266802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic regulation and the variability of gene expression.
    Choi JK; Kim YJ
    Nat Genet; 2008 Feb; 40(2):141-7. PubMed ID: 18227874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay between BDF1 and BDF2 and their roles in regulating the yeast salt stress response.
    Fu J; Hou J; Liu L; Chen L; Wang M; Shen Y; Zhang Z; Bao X
    FEBS J; 2013 May; 280(9):1991-2001. PubMed ID: 23452060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and distinct regulation of yeast TATA box-containing genes.
    Basehoar AD; Zanton SJ; Pugh BF
    Cell; 2004 Mar; 116(5):699-709. PubMed ID: 15006352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome urbanization: clusters of topologically co-regulated genes delineate functional compartments in the genome of Saccharomyces cerevisiae.
    Tsochatzidou M; Malliarou M; Papanikolaou N; Roca J; Nikolaou C
    Nucleic Acids Res; 2017 Jun; 45(10):5818-5828. PubMed ID: 28369650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional genes.
    van de Peppel J; Holstege FC
    Mol Syst Biol; 2005; 1():2005.0003. PubMed ID: 16729038
    [No Abstract]   [Full Text] [Related]  

  • 18. [Advances in Spt proteins and stress resistance of Saccharomyces cerevisiae].
    Lu Z; Lu Q; Chen Y; Wu R; Huang J; Chen X; Chen D; Huang R
    Sheng Wu Gong Cheng Xue Bao; 2018 May; 34(5):653-663. PubMed ID: 29893073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin regulation and gene centrality are essential for controlling fitness pleiotropy in yeast.
    Zhou L; Ma X; Arbeitman MN; Sun F
    PLoS One; 2009 Nov; 4(11):e8086. PubMed ID: 19956643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From gene networks to gene function.
    Schlitt T; Palin K; Rung J; Dietmann S; Lappe M; Ukkonen E; Brazma A
    Genome Res; 2003 Dec; 13(12):2568-76. PubMed ID: 14656964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.