These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 23338184)

  • 1. Development and characterization of optoelectronic circuit boards produced by two-photon polymerization using a polysiloxane containing acrylate functional groups.
    Woods R; Feldbacher S; Zidar D; Langer G; Satzinger V; Schmid G; Leeb W; Kern W
    Appl Opt; 2013 Jan; 52(3):388-93. PubMed ID: 23338184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispensed polymer waveguides and laser-fabricated couplers for optical interconnects on printed circuit boards.
    Leng Y; Yun V; Lucas L; Herman WN; Goldhar J
    Appl Opt; 2007 Feb; 46(4):602-10. PubMed ID: 17230255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser microstructuring for polymeric lab-on-chips.
    Eaton SM; De Marco C; Martinez-Vazquez R; Ramponi R; Turri S; Cerullo G; Osellame R
    J Biophotonics; 2012 Aug; 5(8-9):687-702. PubMed ID: 22589025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid optoelectronic integrated circuit.
    Macdonald RI; Lam DK; Syrett BA
    Appl Opt; 1987 Mar; 26(5):842-4. PubMed ID: 20454231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 45 degree polymer micromirror integration for board-level three-dimensional optical interconnects.
    Wang F; Liu F; Adibi A
    Opt Express; 2009 Jun; 17(13):10514-21. PubMed ID: 19550447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use.
    Hartman DH; Lalk GR; Howse JW; Krchnavek RR
    Appl Opt; 1989 Jan; 28(1):40-7. PubMed ID: 20548423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab-on-a-chip with integrated optical transducers.
    Balslev S; Jorgensen AM; Bilenberg B; Mogensen KB; Snakenborg D; Geschke O; Kutter JP; Kristensen A
    Lab Chip; 2006 Feb; 6(2):213-7. PubMed ID: 16450030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond laser processing for optofluidic fabrication.
    Sugioka K; Cheng Y
    Lab Chip; 2012 Oct; 12(19):3576-89. PubMed ID: 22820547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design for reliability of polysiloxane-based electrical-optical circuit boards.
    Cai D; Neyer A
    Appl Opt; 2010 Jul; 49(21):4113-9. PubMed ID: 20648197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction.
    Shukla S; Vidal X; Furlani EP; Swihart MT; Kim KT; Yoon YK; Urbas A; Prasad PN
    ACS Nano; 2011 Mar; 5(3):1947-57. PubMed ID: 21366284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4 x 4 vertical-cavity surface-emitting laser (VCSEL) and metal-semiconductor-metal (MSM) optical backplane demonstrator system.
    Plant DV; Robertson B; Hinton HS; Ayliffe MH; Boisset GC; Hsiao W; Kabal D; Kim NH; Liu YS; Otazo MR; Pavlasek D; Shang AZ; Simmons J; Song K; Thompson DA; Robertson WM
    Appl Opt; 1996 Nov; 35(32):6365-8. PubMed ID: 21127660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-display applications and the next generation of liquid crystal over silicon technology.
    Wilkinson TD; Henderson C; Gil Leyva D; Ghannam R; Crossland WA
    Philos Trans A Math Phys Eng Sci; 2006 Oct; 364(1847):2721-31. PubMed ID: 16973485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of 10 Gbit/s transmission with an optical backplane system using optical slots.
    Cho IK; Yoon KB; Ahn SH; Sung HK; Ha Sw; Heo YU; Park HH
    Opt Lett; 2005 Jul; 30(13):1635-7. PubMed ID: 16075521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-based plasmonic waveguides for photonic integrated circuits.
    Kim JT; Choi SY
    Opt Express; 2011 Nov; 19(24):24557-62. PubMed ID: 22109483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid optoelectronic buffer using CMOS memory and optical interfaces for 10-Gbit/s asynchronous variable-length optical packets.
    Nakahara T; Takenouchi H; Urata R; Yamazaki H; Takahashi R
    Opt Express; 2010 Sep; 18(20):20565-71. PubMed ID: 20940951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices.
    Wu D; Chen QD; Niu LG; Wang JN; Wang J; Wang R; Xia H; Sun HB
    Lab Chip; 2009 Aug; 9(16):2391-4. PubMed ID: 19636471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step patterning of hybrid xerogel materials for the fabrication of disposable solid-state light emitters.
    Carregal-Romero E; Llobera A; Cadarso VJ; Darder M; Aranda P; Domínguez C; Ruiz-Hitzky E; Fernández-Sanchez C
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5029-37. PubMed ID: 22950757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler.
    Lin X; Hosseini A; Dou X; Subbaraman H; Chen RT
    Opt Express; 2013 Jan; 21(1):60-9. PubMed ID: 23388896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.
    Long X; Bai J; Zhao W; Stoian R; Hui R; Cheng G
    Opt Lett; 2012 Aug; 37(15):3138-40. PubMed ID: 22859111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconductor quantum templates: bottom-up design of optical devices and photonic circuits using sub-nanoscale high monolayer features and quantum optics.
    Sadeghi SM
    Nanotechnology; 2008 Feb; 19(8):085203. PubMed ID: 21730721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.