These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23339015)

  • 1. Metabolic reconstruction and flux analysis of industrial Pichia yeasts.
    Chung BK; Lakshmanan M; Klement M; Ching CB; Lee DY
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1865-73. PubMed ID: 23339015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials.
    Caspeta L; Shoaie S; Agren R; Nookaew I; Nielsen J
    BMC Syst Biol; 2012 Apr; 6():24. PubMed ID: 22472172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the bioethanol production potential of Scheffersomyces (Pichia) stipitis using validated genome-scale model.
    Parambil LK; Sarkar D
    Biotechnol Lett; 2014 Dec; 36(12):2443-51. PubMed ID: 25129048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins.
    Unrean P
    Biotechnol Prog; 2014; 30(1):28-37. PubMed ID: 24376216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement.
    Chung BK; Selvarasu S; Andrea C; Ryu J; Lee H; Ahn J; Lee H; Lee DY
    Microb Cell Fact; 2010 Jul; 9():50. PubMed ID: 20594333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis.
    Balagurunathan B; Jonnalagadda S; Tan L; Srinivasan R
    Microb Cell Fact; 2012 Feb; 11():27. PubMed ID: 22356827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels.
    Caspeta L; Nielsen J
    Biotechnol J; 2013 May; 8(5):534-44. PubMed ID: 23576362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism.
    Tomàs-Gamisans M; Ferrer P; Albiol J
    PLoS One; 2016; 11(1):e0148031. PubMed ID: 26812499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Reconstruction and application of genome-scale metabolic network model].
    Liu L; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1176-86. PubMed ID: 21141107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris.
    Saitua F; Torres P; Pérez-Correa JR; Agosin E
    BMC Syst Biol; 2017 Feb; 11(1):27. PubMed ID: 28222737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ¹³C-based metabolic flux analysis of recombinant Pichia pastoris.
    Ferrer P; Albiol J
    Methods Mol Biol; 2014; 1191():291-313. PubMed ID: 25178797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant protein production in yeasts.
    Mattanovich D; Branduardi P; Dato L; Gasser B; Sauer M; Porro D
    Methods Mol Biol; 2012; 824():329-58. PubMed ID: 22160907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.
    Irani ZA; Kerkhoven EJ; Shojaosadati SA; Nielsen J
    Biotechnol Bioeng; 2016 May; 113(5):961-9. PubMed ID: 26480251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources.
    Tomàs-Gamisans M; Ferrer P; Albiol J
    Microb Biotechnol; 2018 Jan; 11(1):224-237. PubMed ID: 29160039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.
    Kang Z; Huang H; Zhang Y; Du G; Chen J
    World J Microbiol Biotechnol; 2017 Jan; 33(1):19. PubMed ID: 27905091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae.
    Papini M; Nookaew I; Uhlén M; Nielsen J
    Microb Cell Fact; 2012 Oct; 11():136. PubMed ID: 23043429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P; Das M; Kundu P; Ghosh A
    Biotechnol Adv; 2021; 47():107695. PubMed ID: 33465474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process technology for production and recovery of heterologous proteins with Pichia pastoris.
    Jahic M; Veide A; Charoenrat T; Teeri T; Enfors SO
    Biotechnol Prog; 2006; 22(6):1465-73. PubMed ID: 17137292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pichia anomala: cell physiology and biotechnology relative to other yeasts.
    Walker GM
    Antonie Van Leeuwenhoek; 2011 Jan; 99(1):25-34. PubMed ID: 20706871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.