These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23339321)
1. The evaluation of multivariate adaptive regression splines for the prediction of antitumor activity of acridinone derivatives. Koba M; Bączek T Med Chem; 2013 Dec; 9(8):1041-50. PubMed ID: 23339321 [TBL] [Abstract][Full Text] [Related]
2. Application of artificial neural networks for the prediction of antitumor activity of a series of acridinone derivatives. Koba M Med Chem; 2012 May; 8(3):309-19. PubMed ID: 22530901 [TBL] [Abstract][Full Text] [Related]
3. Influence of LC retention data on antitumor acridinones' classification evaluated by factor analysis method. Koba M; Baczek T; Ciesielski T Comb Chem High Throughput Screen; 2012 Sep; 15(8):674-83. PubMed ID: 22443516 [TBL] [Abstract][Full Text] [Related]
4. The application of connected QSRR and QSAR strategies to predict the physicochemical interaction of acridinone derivatives with DNA. Szatkowska-Wandas P; Koba M; Kuchcicka A; Kurek S; Daghir-Wojtkowiak E; Bączek T Comb Chem High Throughput Screen; 2014; 17(10):820-6. PubMed ID: 25387726 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical interaction of antitumor acridinone derivatives with DNA in view of QSAR studies. Koba M; Bączek T Med Chem Res; 2011 Nov; 20(8):1385-1393. PubMed ID: 22003274 [TBL] [Abstract][Full Text] [Related]
6. Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Antitumor Activity of Anthrapyrazole Derivatives. Gackowski M; Szewczyk-Golec K; Pluskota R; Koba M; Mądra-Gackowska K; Woźniak A Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563523 [TBL] [Abstract][Full Text] [Related]
7. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents. Ahmadi S; Habibpour E Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182 [TBL] [Abstract][Full Text] [Related]
8. Importance of retention data from affinity and reverse-phase high-performance liquid chromatography on antitumor activity prediction of imidazoacridinones using QSAR strategy. Koba M; Bączek T; Marszałł MP J Pharm Biomed Anal; 2012 May; 64-65():87-93. PubMed ID: 22417615 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, antitumor and antitubercular evaluation of certain new xanthenone and acridinone analogs. Abadi AH; el-Subbagh HI; al-Khamees HA Arzneimittelforschung; 1999 Mar; 49(3):259-66. PubMed ID: 10219471 [TBL] [Abstract][Full Text] [Related]
10. Antitumor activity of novel benzensulfonamide derivatives in view of their physiochemical properties searched by principal component analysis. Belka M; Sławinski J; Konieczna L; Kawczak P; Ciesielski T; Baczek T Med Chem; 2013 Jun; 9(4):517-25. PubMed ID: 23140578 [TBL] [Abstract][Full Text] [Related]
12. Application of a Validated QSTR Model for Repurposing COX-2 Inhibitor Coumarin Derivatives as Potential Antitumor Agents. Tugcu G; Sipahi H; Aydin A Curr Top Med Chem; 2019; 19(13):1121-1128. PubMed ID: 31210111 [TBL] [Abstract][Full Text] [Related]
13. QSRR and QSAR Studies of Antitumor Drugs in View of their Biological Activity Prediction. Szatkowska-Wandas P; Koba M; Smolinski G; Wandas J Med Chem; 2016; 12(6):592-600. PubMed ID: 26427930 [TBL] [Abstract][Full Text] [Related]
14. Antimalarial activity of new acridinone derivatives. Fernández-Calienes A; Pellón R; Docampo M; Fascio M; D'Accorso N; Maes L; Mendiola J; Monzote L; Gille L; Rojas L Biomed Pharmacother; 2011 Jun; 65(3):210-4. PubMed ID: 21641752 [TBL] [Abstract][Full Text] [Related]
15. Identification of amino acid appended acridines as potential leads to anti-cancer drugs. Singh P; Kumar A; Sharma A; Kaur G Bioorg Med Chem Lett; 2015 Sep; 25(18):3854-8. PubMed ID: 26238321 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and biological evaluation of modified acridines: the effect of N- and O- substituent in the nitrogenated ring on antitumor activity. Sánchez I; Reches R; Caignard DH; Renard P; Pujol MD Eur J Med Chem; 2006 Mar; 41(3):340-52. PubMed ID: 16413635 [TBL] [Abstract][Full Text] [Related]
17. QSAR on antiproliferative naphthoquinones based on a conformation-independent approach. Duchowicz PR; Bennardi DO; Bacelo DE; Bonifazi EL; Rios-Luci C; Padrón JM; Burton G; Misico RI Eur J Med Chem; 2014 Apr; 77():176-84. PubMed ID: 24631897 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and structure-activity relationships of potential anticancer agents: alkylcarbamates of 3-(9-acridinylamino)-5-hydroxymethylaniline. Su TL; Chen CH; Huang LF; Chen CH; Basu MK; Zhang XG; Chou TC J Med Chem; 1999 Nov; 42(23):4741-8. PubMed ID: 10579838 [TBL] [Abstract][Full Text] [Related]
19. Theoretical interpretation of electronic absorption and emission transitions in 9-acridinones. Bouzyk A; Jóźwiak L; Kolendo AY; Błazejowski J Spectrochim Acta A Mol Biomol Spectrosc; 2003 Feb; 59(3):543-58. PubMed ID: 12524125 [TBL] [Abstract][Full Text] [Related]
20. Novel synthetic 2-amino-10-(3,5-dimethoxy)benzyl-9(10H)-acridinone derivatives as potent DNA-binding antiproliferative agents. Gao C; Liu F; Luan X; Tan C; Liu H; Xie Y; Jin Y; Jiang Y Bioorg Med Chem; 2010 Nov; 18(21):7507-14. PubMed ID: 20863710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]