These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23339440)

  • 1. The contribution of atom accessibility to site of metabolism models for cytochromes P450.
    Rydberg P; Rostkowski M; Gloriam DE; Olsen L
    Mol Pharm; 2013 Apr; 10(4):1216-23. PubMed ID: 23339440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SMARTCyp cytochrome P450 metabolism prediction server.
    Rydberg P; Gloriam DE; Olsen L
    Bioinformatics; 2010 Dec; 26(23):2988-9. PubMed ID: 20947523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism.
    Rydberg P; Gloriam DE; Zaretzki J; Breneman C; Olsen L
    ACS Med Chem Lett; 2010 Jun; 1(3):96-100. PubMed ID: 24936230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing better drugs: predicting cytochrome P450 metabolism.
    de Groot MJ
    Drug Discov Today; 2006 Jul; 11(13-14):601-6. PubMed ID: 16793528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Prediction of CYP-Mediated Metabolism with Chemical Fingerprints.
    Zaretzki J; Boehm KM; Swamidass SJ
    J Chem Inf Model; 2015 May; 55(5):972-82. PubMed ID: 25871613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D SMARTCyp reactivity-based site of metabolism prediction for major drug-metabolizing cytochrome P450 enzymes.
    Liu R; Liu J; Tawa G; Wallqvist A
    J Chem Inf Model; 2012 Jun; 52(6):1698-712. PubMed ID: 22631565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling information transfer with VRML: from small molecules to large systems in bioscience.
    Moeckel G; Keil M; Exner T; Brickmann J
    Pac Symp Biocomput; 1998; ():327-38. PubMed ID: 9697193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADME evaluation in drug discovery. 2. Prediction of partition coefficient by atom-additive approach based on atom-weighted solvent accessible surface areas.
    Hou TJ; Xu XJ
    J Chem Inf Comput Sci; 2003; 43(3):1058-67. PubMed ID: 12767165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of amino acid residues participated in substrate recognition by cytochrome P450 subfamilies with broad substrate specificity.
    Zharkova MS; Sobolev BN; Yu Oparina N; Veselovsky AV; Archakov AI
    J Mol Recognit; 2013 Feb; 26(2):86-91. PubMed ID: 23334916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMARTCyp 3.0: enhanced cytochrome P450 site-of-metabolism prediction server.
    Olsen L; Montefiori M; Tran KP; Jørgensen FS
    Bioinformatics; 2019 Sep; 35(17):3174-3175. PubMed ID: 30657882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking.
    Li W; Tang Y; Liu H; Cheng J; Zhu W; Jiang H
    Proteins; 2008 May; 71(2):938-49. PubMed ID: 18004755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional computation of atom depth in complex molecular structures.
    Varrazzo D; Bernini A; Spiga O; Ciutti A; Chiellini S; Venditti V; Bracci L; Niccolai N
    Bioinformatics; 2005 Jun; 21(12):2856-60. PubMed ID: 15827080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules.
    Singh SB; Shen LQ; Walker MJ; Sheridan RP
    J Med Chem; 2003 Apr; 46(8):1330-6. PubMed ID: 12672233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochromes P450 and drug discovery.
    Lamb DC; Waterman MR; Kelly SL; Guengerich FP
    Curr Opin Biotechnol; 2007 Dec; 18(6):504-12. PubMed ID: 18006294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108.
    de Groot MJ; Vermeulen NP; Kramer JD; van Acker FA; Donné-Op den Kelder GM
    Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450.
    Clodfelter KH; Waxman DJ; Vajda S
    Biochemistry; 2006 Aug; 45(31):9393-407. PubMed ID: 16878974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Computer-based substrate specifity prediction for cytochrome P450].
    Veselovskiĭ AV; Sobolev BN; Zharkova MS; Archakov AI
    Biomed Khim; 2010; 56(1):90-100. PubMed ID: 21328914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediates in P450 catalysis.
    Poulos TL
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):793-806; discussion 1035-40. PubMed ID: 15901536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).
    Paquette SM; Jensen K; Bak S
    Phytochemistry; 2009 Dec; 70(17-18):1940-7. PubMed ID: 19818975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast prediction of cytochrome P450 mediated drug metabolism.
    Rydberg P; Vasanthanathan P; Oostenbrink C; Olsen L
    ChemMedChem; 2009 Dec; 4(12):2070-9. PubMed ID: 19852016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.