These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 23339483)
21. Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). Giju KT; De Proft F; Geerlings P J Phys Chem A; 2005 Mar; 109(12):2925-36. PubMed ID: 16833611 [TBL] [Abstract][Full Text] [Related]
22. Pseudo Jahn-Teller effect and natural bond orbital analysis of structural properties of tetrahydridodimetallenes M2H4, (M = Si, Ge, and Sn). Nori-Shargh D; Mousavi SN; Boggs JE J Phys Chem A; 2013 Feb; 117(7):1621-31. PubMed ID: 23339338 [TBL] [Abstract][Full Text] [Related]
23. Theoretical investigations of the reactivities of lattice-framework carbene analogues of the group 14 elements. Hsiao J; Su MD Dalton Trans; 2010 Oct; 39(39):9304-13. PubMed ID: 20652200 [TBL] [Abstract][Full Text] [Related]
24. B═B and B≡E (E = N and o) multiple bonds in the coordination sphere of late transition metals. Brand J; Braunschweig H; Sen SS Acc Chem Res; 2014 Jan; 47(1):180-91. PubMed ID: 23952302 [TBL] [Abstract][Full Text] [Related]
25. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. De La Cruz C; Sheppard N Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107 [TBL] [Abstract][Full Text] [Related]
26. trans-[Pt(BCat')Me(PCy3)2]: an experimental case study of reductive elimination processes in Pt-Boryls through associative mechanisms. Braunschweig H; Bertermann R; Brenner P; Burzler M; Dewhurst RD; Radacki K; Seeler F Chemistry; 2011 Oct; 17(42):11828-37. PubMed ID: 21901774 [TBL] [Abstract][Full Text] [Related]
27. Germanium and tin analogues of alkynes and their reduction products. Pu L; Phillips AD; Richards AF; Stender M; Simons RS; Olmstead MM; Power PP J Am Chem Soc; 2003 Sep; 125(38):11626-36. PubMed ID: 13129367 [TBL] [Abstract][Full Text] [Related]
28. Role played by isopropyl substituents in stabilizing the putative triple bond in Ar'EEAr' [E = Si, Ge, Sn; Ar' = C6H3-2,6-(C6H3-2,6-Pr(i)2)2] and Ar*PbPbAr* [Ar* = C6H3-2,6-(C6H2-2,4,6-Pr(i)3)2]. Seidu I; Seth M; Ziegler T Inorg Chem; 2013 Aug; 52(15):8378-88. PubMed ID: 23855886 [TBL] [Abstract][Full Text] [Related]
29. Metal complexes containing allenylidene and higher cumulenylidene ligands: a theoretical perspective. Coletti C; Marrone A; Re N Acc Chem Res; 2012 Feb; 45(2):139-49. PubMed ID: 21899273 [TBL] [Abstract][Full Text] [Related]
30. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os). Pandey KK Dalton Trans; 2012 Mar; 41(11):3278-86. PubMed ID: 22290219 [TBL] [Abstract][Full Text] [Related]
31. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies. Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010 [TBL] [Abstract][Full Text] [Related]
32. Chemical bonding in transition metal complexes with beryllium ligands [(PMe(3))(2)M-BeCl(2)], [(PMe(3))(2)M-BeClMe], and [(PMe(3))(2)M-BeMe(2)] (M = Ni, Pd, Pt). Parameswaran P; Frenking G J Phys Chem A; 2010 Aug; 114(33):8529-35. PubMed ID: 20038110 [TBL] [Abstract][Full Text] [Related]
33. Analysis of the bonding between two M(μ-NAr(#)) monomers in the dimeric metal(II) imido complexes {M(μ-NAr(#))}2 [M = Si, Ge, Sn, Pb; Ar(#) = C6H3-2,6-(C6H2-2,4,6-R3)2]. The stabilizing role played by R = Me and iPr. Brela M; Michalak A; Power PP; Ziegler T Inorg Chem; 2014 Feb; 53(4):2325-32. PubMed ID: 24502527 [TBL] [Abstract][Full Text] [Related]
34. Mechanistic investigations on E-N bond-breaking and ring expansion for N-heterocyclic carbene analogues containing the group 14 elements (E). Su MD Inorg Chem; 2014 May; 53(10):5080-7. PubMed ID: 24786838 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of abstraction reactions of heavy cyclopropenes with carbon tetrachloride. Chen CH; Su MD J Phys Chem A; 2007 Aug; 111(30):7162-70. PubMed ID: 17625812 [TBL] [Abstract][Full Text] [Related]
36. Reversible valence equilibrium reactions in main group compounds. A theoretical study. Tsai ML; Su MD J Phys Chem A; 2006 May; 110(19):6216-23. PubMed ID: 16686454 [TBL] [Abstract][Full Text] [Related]
37. Noble reaction features of bromoborane in oxidative addition of B-Br σ-bond to [M(PMe3)2] (M=Pt or Pd): theoretical study. Zeng G; Sakaki S Inorg Chem; 2011 Jun; 50(11):5290-7. PubMed ID: 21557562 [TBL] [Abstract][Full Text] [Related]
38. Group 14 hydrides with low valent elements for activation of small molecules. Mandal SK; Roesky HW Acc Chem Res; 2012 Feb; 45(2):298-307. PubMed ID: 21882810 [TBL] [Abstract][Full Text] [Related]
39. Transition-metal complexes [(PMe(3))(2)Cl(2)M(E)] and [(PMe(3))(2)(CO)(2)M(E)] with naked group 14 atoms (E=C-Sn) as ligands; part 2: complexation with W(CO)(5). Parameswaran P; Frenking G Chemistry; 2009 Sep; 15(35):8817-24. PubMed ID: 19609990 [TBL] [Abstract][Full Text] [Related]