These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2333953)

  • 1. Replacement of molecular species of phosphatidylcholine: influence on erythrocyte Na transport.
    Engelmann B; Op den Kamp JA; Roelofsen B
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C682-91. PubMed ID: 2333953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular species of membrane phospholipids containing arachidonic acid and linoleic acid contribute to the interindividual variability of red blood cell Na(+)-Li+ countertransport: in vivo and in vitro evidence.
    Engelmann B; Duhm J; Schönthier UM; Streich S; Op den Kamp JA; Roelofsen B
    J Membr Biol; 1993 Apr; 133(2):99-106. PubMed ID: 8515433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes.
    Duhm J; Becker BF
    J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide.
    Duhm J
    J Membr Biol; 1987; 98(1):15-32. PubMed ID: 3669063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole.
    Duhm J; Becker BF
    Pflugers Arch; 1977 Jan; 367(3):211-9. PubMed ID: 13345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on lithium transport across the red cell membrane. VI. Properties of a sulfhydryl group involved in ouabain-resistant Na+-Li+ (and Na+-Na+) exchange in human and bovine erythrocytes.
    Becker BF; Duhm J
    J Membr Biol; 1979 Dec; 51(3-4):287-310. PubMed ID: 231659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol modulation of transmembrane cation transport systems in human erythrocytes.
    Lijnen P; Petrov V
    Biochem Mol Med; 1995 Oct; 56(1):52-62. PubMed ID: 8593538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red cell sodium in DOCA-salt hypertension: a Brattleboro study.
    Talib HK; Zicha J
    Life Sci; 1992; 50(14):1021-30. PubMed ID: 1552821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of chronic alterations of salt intake and aging on the kinetic of red cell Na+ and K+ transport in Sprague-Dawley rats.
    Zicha J; Duhm J
    Physiol Bohemoslov; 1990; 39(1):37-44. PubMed ID: 2142786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell ouabain-resistant Na+ and K+ transport in Wistar, brown Norway and spontaneously hypertensive rats.
    Bin Talib HK; Zicha J
    Physiol Res; 1993; 42(3):181-8. PubMed ID: 8218151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape changes in human erythrocytes induced by replacement of the native phosphatidylcholine with species containing various fatty acids.
    Kuypers FA; Roelofsen B; Berendsen W; Op den Kamp JA; van Deenen LL
    J Cell Biol; 1984 Dec; 99(6):2260-7. PubMed ID: 6501425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of metabolic depletion on the furosemide-sensitive Na and K fluxes in human red cells.
    Dagher G; Brugnara C; Canessa M
    J Membr Biol; 1985; 86(2):145-55. PubMed ID: 2993628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the lithium transport across the red cell membrane. III. Factors contributing to the intraindividual variability of the in vitro Li+ distribution across the human red cell membrane.
    Duhm J; Becker BF
    Pflugers Arch; 1977 Apr; 368(3):203-8. PubMed ID: 559291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium efflux through the Na/K pump in human erythrocytes.
    Dunham PB; Senyk O
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3099-103. PubMed ID: 268658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part 1: Evaluation of a simple uptake test to assess the activity of the two transport systems.
    Duhm J; Göbel BO
    Hypertension; 1982; 4(4):468-76. PubMed ID: 7152628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pig reticulocytes. V. Development of Rb+ influx during in vitro maturation.
    Lauf PK; Zeidler RB; Kim HD
    J Cell Physiol; 1984 Nov; 121(2):284-90. PubMed ID: 6490727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated transbilayer movement of phosphatidylcholine in sickled erythrocytes. A reversible process.
    Franck PF; Chiu DT; Op den Kamp JA; Lubin B; van Deenen LL; Roelofsen B
    J Biol Chem; 1983 Jul; 258(13):8436-42. PubMed ID: 6863295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cholesterol and dipalmitoyl phosphatidylcholine enrichment on the kinetics of Na-Li exchange of human erythrocytes.
    Engelmann B; Duhm J
    J Membr Biol; 1991 Jun; 122(3):231-8. PubMed ID: 1920387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotransport of lithium and potassium in human red cells.
    Canessa M; Bize I; Adragna N; Tosteson D
    J Gen Physiol; 1982 Jul; 80(1):149-68. PubMed ID: 7119728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.