These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2333953)

  • 21. Role of the furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo.
    Duhm J; Göbel BO
    J Membr Biol; 1984; 77(3):243-54. PubMed ID: 6699906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversibility and partial reactions of the Na(+)-K+ pump of rat erythrocytes.
    Duhm J; Zicha J
    Physiol Bohemoslov; 1990; 39(1):3-14. PubMed ID: 2142785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erythrocyte lipid composition and sodium transport in human liver disease.
    Owen JS; McIntyre N
    Biochim Biophys Acta; 1978 Jun; 510(1):168-76. PubMed ID: 667033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of a chronic high salt intake on blood pressure and the kinetics of sodium and potassium transport in erythrocytes of young and adult subtotally nephrectomized Sprague-Dawley rats.
    Zicha J; Kronauer J; Duhm J
    J Hypertens; 1990 Mar; 8(3):207-17. PubMed ID: 2159501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Erythrocyte cation transport systems and membrane lipids in insulin-dependent diabetes.
    Lijnen P; Fenyvesi A; Bex M; Bouillon R; Amery A
    Am J Hypertens; 1993 Sep; 6(9):763-70. PubMed ID: 8110430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation of a ouabain-sensitive Rb+ uptake in human erthrocytes with an external electric field.
    Serpersu EH; Tsong TY
    J Membr Biol; 1983; 74(3):191-201. PubMed ID: 6887232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family.
    Pandey GN; Ostrow DG; Haas M; Dorus E; Casper RC; Davis JM; Tosteson DC
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3607-11. PubMed ID: 269417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interindividual differences in the Na+-dependent Li+ countertransport system and in the Li+ distribution ratio across the red cell membrane among Li+-treated patients.
    Greil W; Eisenried F; Becker BF; Duhm J
    Psychopharmacology (Berl); 1977 Jun; 53(1):19-26. PubMed ID: 407610
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of cholesterol on the valinomycin-mediated uptake of rubidium into erythrocytes and phospholipid vesicles.
    Labelle EF
    Biochim Biophys Acta; 1979 Aug; 555(2):259-69. PubMed ID: 476106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for imbalanced furosemide-sensitive Na+, K+ cotransport in hereditary stomatocytosis.
    Chailley B; Feo C; Garay R; Dagher G; Bruckdorfer R; Fischer S; Piau JP; Delaunay J
    Scand J Haematol; 1981 Nov; 27(5):365-73. PubMed ID: 7346999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of membrane incorporation of short-chain phospholipids on sodium pump function in human erthrocytes.
    Dwight JF; Hendry BM
    Clin Chim Acta; 1995 Dec; 243(1):73-85. PubMed ID: 8747515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of human erythrocyte and leukocyte Na+, K(+)-pump activity by lysophosphatidylcholines.
    Lijnen P; Huysecom J; Fagard R; Staessen J; Amery A
    Methods Find Exp Clin Pharmacol; 1990 May; 12(4):281-6. PubMed ID: 2374475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells.
    Sarkadi B; Alifimoff JK; Gunn RB; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):249-65. PubMed ID: 690598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rate of uptake and efflux of phosphatidylcholine from human erythrocytes depends on the fatty acyl composition of the exchanging species.
    Kuypers FA; Andriesse X; Child P; Roelofsen B; Op den Kamp JA; van Deenen LL
    Biochim Biophys Acta; 1986 May; 857(1):75-84. PubMed ID: 3964706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transfer of lithium ions across the erythrocyte membrane.
    Frazer A; Mendels J; Brunswick D
    Commun Psychopharmacol; 1977; 1(3):255-70. PubMed ID: 606477
    [No Abstract]   [Full Text] [Related]  

  • 37. Molecular species composition of membrane phosphatidylcholine influences the rate of cholesterol efflux from human erythrocytes and vesicles of erythrocyte lipid.
    Child P; op den Kamp JA; Roelofsen B; van Deenen LL
    Biochim Biophys Acta; 1985 Apr; 814(2):237-46. PubMed ID: 3978102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media].
    Iurinskaia VE; Moshkov AV; Goriachaia TS; Vereninov AA
    Tsitologiia; 2013; 55(10):703-12. PubMed ID: 25509124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Erythrocyte cation fluxes in normal and hypertensive human subjects.
    Stokes GS; Monaghan JC; Middleton AT
    Clin Exp Pharmacol Physiol; 1983; 10(3):279-82. PubMed ID: 6627741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the lithium transport across the red cell membrane. I.V. Interindividual variations in the Na+-dependent Li+ countertransport system of human erythrocytes.
    Duhm J; Becker BF
    Pflugers Arch; 1977 Sep; 370(3):211-9. PubMed ID: 563051
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.