These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. Golomb D; Yue C; Yaari Y J Neurophysiol; 2006 Oct; 96(4):1912-26. PubMed ID: 16807352 [TBL] [Abstract][Full Text] [Related]
5. Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. Atherton LA; Prince LY; Tsaneva-Atanasova K J Comput Neurosci; 2016 Aug; 41(1):91-106. PubMed ID: 27221619 [TBL] [Abstract][Full Text] [Related]
6. Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. Yue C; Yaari Y J Neurophysiol; 2006 Jun; 95(6):3480-95. PubMed ID: 16495357 [TBL] [Abstract][Full Text] [Related]
7. Dendritic-targeting interneuron controls spike timing of hippocampal CA1 pyramidal neuron via activation of I(h). Park S; Kwag J Neurosci Lett; 2012 Aug; 523(1):9-14. PubMed ID: 22698581 [TBL] [Abstract][Full Text] [Related]
8. Theta oscillation-coupled dendritic spiking integrates inputs on a long time scale. Huhn Z; Orbán G; Erdi P; Lengyel M Hippocampus; 2005; 15(7):950-62. PubMed ID: 16108010 [TBL] [Abstract][Full Text] [Related]
12. A transitional period of Ca2+-dependent spike afterdepolarization and bursting in developing rat CA1 pyramidal cells. Chen S; Yue C; Yaari Y J Physiol; 2005 Aug; 567(Pt 1):79-93. PubMed ID: 15919718 [TBL] [Abstract][Full Text] [Related]
13. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. Barrio R; Martínez MA; Serrano S; Shilnikov A Chaos; 2014 Jun; 24(2):023128. PubMed ID: 24985442 [TBL] [Abstract][Full Text] [Related]
14. A two-variable model of somatic-dendritic interactions in a bursting neuron. Laing CR; Longtin A Bull Math Biol; 2002 Sep; 64(5):829-60. PubMed ID: 12391859 [TBL] [Abstract][Full Text] [Related]
15. Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons. Tropp Sneider J; Chrobak JJ; Quirk MC; Oler JA; Markus EJ Neuroscience; 2006 Sep; 141(4):1665-77. PubMed ID: 16843607 [TBL] [Abstract][Full Text] [Related]
16. Regulation of burst dynamics improves differential encoding of stimulus frequency by spike train segregation. Mehaffey WH; Fernandez FR; Maler L; Turner RW J Neurophysiol; 2007 Aug; 98(2):939-51. PubMed ID: 17581845 [TBL] [Abstract][Full Text] [Related]
17. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network. Zeldenrust F; Wadman WJ Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445 [TBL] [Abstract][Full Text] [Related]
18. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. Jarsky T; Mady R; Kennedy B; Spruston N J Comp Neurol; 2008 Feb; 506(4):535-47. PubMed ID: 18067146 [TBL] [Abstract][Full Text] [Related]
19. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity. Cutsuridis V Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353 [TBL] [Abstract][Full Text] [Related]
20. Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron. Milstein JN; Koch C Neural Comput; 2008 Aug; 20(8):2070-84. PubMed ID: 18386982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]